Reference

Version 1

SimBiology

For Use with MATLAB®

Computation
Visualization

Programming

._‘\The MathWorks

XLy

How to Contact The MathWorks:

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information
508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

SimBiology Reference
© COPYRIGHT 2005 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History
September 2005 Online only New for Version 1.0 (Release 14SP3+)

Functions - Categorical List

1

ToOlS ... e 1-2
Projects i 1-3
SBML Models, 14
Object Constructorscivv... 1-5
Units e 1-6

Functions — Alphabetical List

2|

Methods — Categorical List

3

Abstract KineticLaws 3-2
Configuration Sets 3-3
KineticLaws i i, 3-4
Models e 3-5

Parameterst 3-6

ii

Contents

Root ... e e 3-8
Rules i e e 3-9
Species e e 3-10
Using Object Methods 3-11
Constructing (Creating) Objects 3-11
Using Object Methods i, 3-11
Help for Objects, Methods and Properties 3-12

Methods — Alphabetical List

4

Properties — Categorical List

5|

Abstract KineticLaw 5-2
Configuration Sets 5-3
KineticLaws 5-4
Models 5-5
Parameters i i, 5-6
Reactions i i, 5-7
Root 5-8

Species e e 5-10
Using Object Properties 5-11
Entering property values 5-11
Retrieving property values 5-11
Help for Objects, Methods and Properties 5-12

Properties — Alphabetical List

Index

iii

iv Contents

Functions — Categorical List

This chapter is a reference for the functions in SimBiology. Functions are
grouped into the following categories.

Tools (p. 1-2) Functions for modeling, simulation,
and analysis

Projects (p. 1-3) Functions for saving and opening
projects in MATLAB

SBML Models (p. 1-4) Functions for reading and writing
SBML models to files

Object Constructors (p. 1-5) MATLAB functions that create

SimBiology objects

Units (p. 1-6) Functions for unit conversion and
creating user defined units

1 Functions — Categorical List

1-2

Tools

Functions for modeling, simulation, and analysis.

sbiodesktop

sbiogetmodel

sbiogetnamedstate

sbiohelp

sbioreset

sbioselect

sbiosimulate

Open SimBiology modeling and
simulation GUI

Get SimBiology model object that
generated simulation data

Return state and time data from
simulation results

Display information for SimBiology
functions

Delete all SimBiology model and
simulation objects

Search for SimBiology objects with
specified constraints

Simulate SimBiology model object

Projects

Projects

Functions for saving and opening projects in MATLAB.

sbioaddtolibrary (project)

sbiocopylibrary (project)

sbioloadproject (project)
sbioremovefromlibrary
(project)

sbiosaveproject (project)

sbiowhos (project)

Add abstract kinetic law to
user-defined library

Copy SimBiology library to disk

Load SimBiology project from project
file

Remove abstract kinetic law or unit
from user-defined library

Save all models in SimBiology root
object

Show contents of project file, library
file or SimBiology root object

1-3

1 Functions — Categorical List

14

SBML Models

Functions for reading and writing SBML models to files.

sbmlexport Export SimBiology model to SBML
file
sbmlimport Import Systems Markup Language

(SBML) formatted file

Object Constructors

Object Constructors

MATLAB functions that create SimBiology objects.

sbioabstractkineticlaw
(abstractkineticlaw)

sbiomodel (model)
sbioparameter (parameter)
sbioreaction (reaction)
sbioroot (root)

sbiorule (rule)

sbiospecies (species)

Construct abstract kinetic law object

Construct model object
Construct parameter object
Construct reaction object
Return SimBiology root object
Construct rule object

Construct species object

1-5

1 Functions — Categorical List

1-6

Functions for unit conversion and creating user defined units.

sbioconvertunits (unit)

sbioregisterunit (unit)
sbioregisterunitprefix (unit)

sbioshowunitprefixes (unit)

sbioshowunits (unit)

sbiounitcalculator (unit)

sbiounregisterunit (unit)

sbiounregisterunitprefix
(unit)

Convert unit and unit value to new
unit

Create user-defined unit
Create user-defined unit prefix

Return information about registered
unit prefixes

Return information about registered
units

Convert value between units

Remove user-defined unit from root
and library

Remove user-defined unit prefix
from root and library .

Functions — Alphabetical
List

sbioaddtolibrary (project)

2-2

Purpose
Syntax

Description

Example

Add abstract kinetic law to user-defined library
sbioaddtolibrary (abstkineticlawObj)

sbioaddtolibrary (abstkineticlawobj) adds the abstract kinetic

law object (abstkineticlawObj) to the user-defined library.
abstkineticlawObj is added to the SimBiology root object’s
UserDefinedKineticLaws list. abstkineticlawObj is available
automatically in future MATLAB sessions. You can use the abstract
kinetic law objects in the built-in and user-defined library to construct a
kinetic law object with the method addkineticlaw.

To get the abstract kinetic law objects in the built-in and user-defined
libraries, use the commands get (sbioroot, 'BuiltInKineticLaws'),
get(sbioroot, 'UserDefinedKineticLaws').

To remove an abstract kinetic law from the user-defined library, use the
method sbioremovefromlibrary. You will not be able to remove an
abstract kinetic law object being used by a kinetic law object.

This example shows how to create an abstract kinetic law and add it
to the user-defined library.

1 Create an abstract kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('mylawl', '(k1*s)/(k2+k1+s)');
2 Assign the parameter and species variables in the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

SimBiology adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbioaddtolibrary (project)
|

sbiowhos -kineticlaw -userdefined
Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

4 Use the new abstract kinetic law when defining a reaction’s kinetic
law.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A + B <-> B + C');
kineticlawObj = addkineticlaw(reactionObj, 'mylawil');

Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in the kineticlawObj to fully define the
ReactionRate of the reaction.

See Also addkineticlaw, shioabstractkineticlaw, sbioregisterunit,
sbioregisterunitprefix, sbioroot

2-3

sbioconvertunits (unit)

Purpose Convert unit and unit value to new unit
Syntax sbioconvertunits(obj,
'Unit")
Description sbioconvertunits(0Obj, 'Unit') converts the current *Units property

on SimBiology object, 0bj to the unit, unit. This will configure

the *Units property to Unit and update the corresponding value
property. For example sbioconverunits on a speciesObj updates the
InitialAmount property value and the InitialAmountUnits property
value.

0bj can be an array of SimBiology objects. 0bj must be a SimBiology
object that contains a unit property. The SimBiology objects that
contain a unit property are SimBiology species and parameter objects.
For example, if Obj is a species object with InitialAmount configured
to 1 and InitialAmountUnits configured to mole, after the call to
sbioconvertunits with unit specified as molecule, speciesObj
InitialAmount is 6.0221e23 and InitialAmountUnits is molecule.

Example Convert the units of the initial amount of glucose from molecule to
mole.

1 Create the species ’glucose’ and assign an initial amount of 23
molecule.

At the command prompt type,

speciesObj = sbiospecies ('glucose', 23, 'InitialAmountUnits', 'molecule’)

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 glucose 23 molecule

2 Convert the InitialAmountUnits of glucose from molecule to mole.

2-4

sbioconvertunits (unit)

sbioconvertunits (speciesObj, 'mole')

3 Verify the conversion of units and InitialAmount value.

Units are converted from molecule to mole.

get (speciesObj2, 'InitialAmountUnits"')

ans =
mole

InitialAmount value is changed.

get (speciesObj2, 'InitialAmount')

ans =

3.8192e-023

See Also sbioshowunits

2-5

sbiocopylibrary (project)

Purpose Copy SimBiology library to disk

SYI‘I"CIX sbiocopylibrary ('kineticlaw',’LibraryFileName’)
sbiocopylibrary ('unit',’LibraryFileName’)

Description sbiocopylibrary copies all user-defined abstract kinetic laws to
a file.sbiocopylibrary ('kineticlaw',’LibraryFileName’) copies all
user-defined abstract kinetic laws to the file LibraryFileName.sbklib.

sbiocopylibrary ('unit',’LibraryFileName’) copies all user-defined
units and unit-prefixes to the file LibraryFileName.sbulib.

To get the abstract kinetic law objects in the built-in and user-defined
libraries, use the commands get(sbioroot, 'BuiltInKineticLaws'),
get(sbioroot, 'UserDefinedKineticLaws'). To add an

abstract kinetic law to the user-defined library, use the method
sbioaddtolibrary.

To add a unit to the user-defined library, use the sbioregisterunit
function. To add a unit prefix to the user-defined library, use the
sbioregisterunitprefix function.

Example Create an abstract kinetic law, add it to the user-defined library and
then copy the user-defined kinetic law library to a .sbklib file.

1 Create an abstract kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('mylawl', '(k1*s)/(k2+k1+s)');
2 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

SimBiology adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

2-6

sbiocopylibrary (project)
|

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/ (k2+k1+s)

3 Copy the user-defined kinetic law library.

sbiocopylibrary kineticLaw myLibFile

4 Verify with sbiowhos.

sbiowhos -kineticlaw myLibFile

See Also sbioaddtolibrary, shioabstractkineticlaw, shioregisterunit,
sbioregisterunitprefix, sbioremovefromlibrary

2-7

sbiodesktop

Purpose Open SimBiology modeling and simulation GUI

Syntax sbiodesktop
sbiodesktop (modelObj)

Arguments
modelObj Model object or an array of model objects. Enter
a variable name for a top-level SimBiology
model object.

Description sbiodesktop opens the SimBiology GUL The SimBiology GUI enables
you to:

¢ Build a SimBiology model using reaction pathways and enter kinetic
data for the reactions.

® Import or export SimBiology models to and from the MATLAB
workspace or from a Systems Biology Markup Language (SBML) file.

® Modify an existing SimBiology model.

® Simulate a SimBiology model.

® View results from the simulation.

® Create and/or modify user-defined units and unit prefixes.

® Create and/or modify user-defined abstract kinetic law objects.
sbiodesktop (modelobj) opens the SimBiology GUI with a top-level

SimBiology model object (model0bj). A top-level SimBiology model
object has its property Parent set to the SimBiology root object

In contrast, A SimBiology model object that has its property Parent
set to another SimBiology model is a submodel and is not stored by
the SimBiology root.

Example Create a SimBiology model in the MATLAB workspace, and then open
the GUI with the model.

sbiodesktop
|

modelObj = sbiomodel('cell');
sbiodesktop(modelObj)

See Also sbioroot

2-9

sbiogetmodel

Pu rpose Get SimBiology model object that generated simulation data
Syntax modelObj = sbiogetmodel(timeseriesObj)
Arguments
timrseriesObj Time series object returned by the function
sbiosimulate.
modelObj Model object associated with the time series
object.
Description modelObj = sbiogetmodel (timeseriesObj) returns the SimBiology

model (modelObj) associated with the results from a simulation run
(timeserieObj). You can use this function to find the model object
associated with the specified time series object when you load a project
with several model objects and time series objects.

If the SimBiology model used to generate the time series object
(timeseriesObj) is not currently loaded, model0bj is empty.

Example Retrieve the model object that generated the time series object.

1 Create a model object, simulate, and then return the results as a
time series object.

modelObj = sbmlimport('oscillator');
timeseriesObj = sbiosimulate(modelObj);

2 Get the model that generated the simulation results.

modelObj2 = sbiogetmodel(timeseriesObj)
SimBiology Model - Oscillator

Model Components:
Models: 0

2-10

sbiogetmodel

Parameters: 0
Reactions: 42
Rules: 0
Species: 23

3 Check that the two models are the same.

modelObj == modelObj2

ans =

See Also sbiosimulate

2-11

sbiogetnamedstate

2-12

Purpose

Syntax

Description

Example

Return state and time data from simulation results

[t,x]= sbiogetnamedstate(timeseriesObj)
[t,x]= sbiogetnamedstate(timeseriesObj, 'SpeciesName')
[t,x,SpeciesName]= sbiogetnamedstate(...)

sbiogetnamedstate returns state and time data from simulation
results. [t,x]= sbiogetnamedstate(timeseriesObj) returns the

time and state data associated with the simulation run results
(timeseriesObj) and returns to t and x respectively. timeseriesObj is
a time series object returned by the sbiosimulate function.

® tis a 1-by-n vector, where n is the number of times the reactions
fired. t defines the time steps of the firing of the reactions.

® x is a n-by-m matrix where n is the number of times the reactions
fired and m is the number of SimBiology species in the SimBiology
model. Each column of x defines the variation in the quantity of a
species over time.

[t,x]= sbiogetnamedstate(timeseriesObj, 'SpeciesName') returns the
state data associated with the SimBiology species of name SpeciesName
from the simulation run results, (timeseriesObj) and returns it to

X. SpeciesName can be a cell array of SimBiology species names. If a
species with name, SpeciesName, does not exist, SimBiology returns a
warning. SpeciesName must be the fully qualified species name, for
example Mode1lName.SpeciesName. If the species is in a submodel,
SpeciesName must be ModelName.SubmodelName.SpeciesName.

[t,x,SpeciesName]= sbiogetnamedstate(...) returns the names of the
species associated with each column of x to SpeciesName.

This example shows a) how to get the data associated with a specified
species and, b) how to get the data and associated names for each state

(x)

1 Import the file for theoscillator model.

sbiogetnamedstate

modelObj = sbmlimport('oscillator.xml');

2 Simulate modelObj.

timeseriesObj = sbiosimulate(modelObj);

3 Get the data for the species namedpol.

[t1, datal] = sbiogetnamedstate(timeseriesObj, 'pol');

4 Get the data and associated names for each x.

[t2, data2, names] = sbiogetnamedstate(timeseriesObj);

5 Plot the results of the simulation.

plot(t3, data3);
legend(names);

See Also sbiosimulate

2-13

sbiohelp

2-14

Purpose

Syntax

Description

Examples

See Also

Display information for SimBiology functions

sbiohelp('FunctionName")
h = sbiohelp ('FunctionName')

sbiohelp('FunctionName')displays information for a SimBiology function
(FunctionName).

h = sbiohelp ('FunctionName')returns the help for the SimBiology
function FunctionName to h.

General information on SimBiology can be returned by specifying
FunctionName as ’sbio’. General information about a SimBiology
object can be returned by specifying FunctionName as one of the
following: 'AbstractKineticLaw’, ’KineticLaw’, 'Model’, ’Parameter’,
’Reaction’, ’Root’, 'Rule’, 'Species’, ’‘Configset’, 'CompileOptions’,
’ExplicitTauSolverOptions’, ’ImplicitTauSolverOptions’,
’ODESolverOptions’, ’RuntimeOptions’, or 'SSASolverOptions’.

sbiohelp('addreaction')
sbiohelp addreaction
sbiohelp reaction
sbiohelp('sbioshowunits"')

MATLAB function help

sbioloadproject (project)

Purpose Load SimBiology project from project file

Syntax sbioloadproject projFilename
sbioloadproject projFilename variableName
sbioloadproject projFilename variableNamel variableName2
variableName3

Description sbioloadproject projFilename loads a SimBiology project from a project
file (projFilename). If no extension is specified SimBiology assumes a
default extension of .sbproj.

sbioloadproject projFilename variableName loads only the variable
variableName from the project file.

sbioloadproject projFilename variableNamel variableName2
variableName3loads only the variables variableName1, variableName2,
and variableName3 from the project. The contents of the project file can
be displayed by using the sbiowhos command.

See Also sbiosaveproject, sbiowhos, sbioaddtolibrary,
sbioremovefromlibrary

2-15

sbioregisterunit (unit)

2-16

Purpose

Syntax

Description

Examples

Create user-defined unit

sbioregisterunit('Name', ’Composition’, Multiplier)
sbioregisterunit('Name', ’Composition’, Multiplier, Offset)
sbioregisterunit('Name', ’Composition’, Multiplier) creates

a unit with the name Name where the unit is defined as
Multiplier*Composition and records the unit in the
UserDefinedUnits vector of sbioroot and adds it to the user-defined
library.

sbioregisterunit('Name', ’Composition’, Multiplier, Offset) creates
a unit with the specified offset. Available units can be listed with the
sbioshowunits function.

® Name is the name of the user-defined unit. Name must begin with
characters and can contain characters, underscores or numbers. Name
can be any valid MATLAB variable name.

® Composition shows the combination of base and derived units that
defines the unit Name. For example molarity is mole/liter. Base
units are the set of units SimBiology uses to define all unit quantity
equations. Derived units are defined using base units or mixtures
of base and derived units.

® Multiplier is the numerical value that defines the relationship
between the unit Name and the base unit as a product of the Multiplier
and the base unit. For example 1 mole is 6.0221e23*molecule. The
Multiplier is 6.0221e23.

® Offset is the numerical value by which the unit composition
is modified from the base unit. For example °Celsius =
(5/9)* (°Fahrenheit-32); Multiplier is 5/9 and Offset is 32.

Example 1

sbioregisterunit('pint2','inch"3',28.875);
sbioregisterunit('celsius2', 'fahrenheit',9/5,32);

sbioregisterunit (unit)

Example 2

1 Create units for the rate constants of a first order and a second order

reaction.
sbioregisterunit('firstconstant', '1/second', 1);
sbioregisterunit('secondconstant', '1/molecule*second', 1);

2 Display the unit using the command sbiowhos

sbiowhos -userdefined -unit

SimBiology UserDefined Units

Index: Name: Composition: Multiplier: Offset:

1 firstconstant 1/second 1.000000 0.000000

2 secondconstant 1/molecule*second 1.000000 0.000000
See Also sbioshowunits, sbioregisterunitprefix, sbiounregisterunit

2-17

sbioregisterunitprefix (unit)

Purpose
Syntax

Description

Example

See Also

2-18

Create user-defined unit prefix
sbioregisterunitprefix('NameValue', Exponent)

sbioregisterunitprefix('NameValue', Exponent) creates a unit prefix
with name NameValue and with a multiplicative factor of 10"Exponent,
adds it to the UserDefinedUnitPrefixes vector in sbioroot and to the
user-defined library. You can see the available unit prefixes with the
sbioshowunitprefixes function.

® NameValue is the name of the prefix. Valid names must begin with a
letter and can contain characters, underscores, or numbers. Built-in
prefixes are defined based on the International System of Units (SI).

® Exponent shows the value of 10"Exponentthat defines the relationship
of the unit ~vame to the base unit. For example for the unit picomole
Exponent is 12.

1 Register a unit prefix.

sbioregisterunitprefix('peta', 15);
sbiowhos -userdefined -unitprefix

SimBiology UserDefined Unit Prefixes

Index: Name: Multiplier:
1 peta 1.000000e+015

sbioshowunits, showunitprefixes, sbiounregisterunit

sbioremovefromlibrary (project)

Purpose Remove abstract kinetic law or unit from user-defined library
Syntax sbioremovefromlibrary (abstkineticlawObj)

sbioremovefromlibrary ('Type', 'Name')
Description sbioremovefromlibrary removes an abstract kinetic law or a unit from

the user-defined library. sbioremovefromlibrary (abstkineticlawObj)
removes the abstract kinetic law object (abstkineticlawObj) from the
user-defined library. abstkineticlawObj will no longer be available
automatically in future MATLAB sessions.

SimBiology does not remove an abstract kinetic law that is being used
in a model.

You can use a built-in or user-defined abstract kinetic law when you
construct a kinetic law object with the method addkineticlaw.

To retrieve the abstract kinetic law objects from the

built-in and user-defined libraries, use the commands
get(sbioroot, 'BuiltInKineticlLaws'), get(sbioroot,
'UserDefinedKineticLaws'). To add an abstract kinetic law to the
user-defined library, use the method sbioaddtolibrary.

sbioremovefromlibrary ('Type', 'Name') removes the object of type
Type’ with name ’Name’ from the corresponding user-defined library.
Type can be ’kineticlaw', ’unit’ or’unitprefix’.

To add a unit to the user-defined library, use the sbioregisterunit
function. To add a unit prefix to the user-defined library, use the
sbioregisterunitprefix function.

Example Shows you how to remove an abstract kinetic law from the user-defined
library.

1 Create an abstract kinetic law.

abstkineticlawObj = sbioabstractkineticlaw('mylawl', '(k1*s)/(k2+k1+s)');

2 Add the new abstract kinetic law to the user-defined library.

2-19

sbioremovefromlibrary (project)

sbioaddtolibrary(abstkineticlawObj);

SimBiology adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined
Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/ (k2+k1+s)

3 Remove the abstract kinetic law.

sbioremovefromlibrary('kineticlaw', ‘'mylawi');

See Also sbioaddtolibrary, sbhioabstractkineticlaw, sbioregisterunit,
sbioregisterunitprefix, sbiounregisterunit,
sbiounregisterprefix

2-20

sbioreset

Purpose
Syntax

Description

Example

Delete all SimBiology model and simulation objects
sbioreset

sbioreset delete all SimBiology model and simulation objects at the
root level. You cannot use a SimBiology model or simulation object after
it is deleted. You should remove objects from the MATLAB workspace
with the function clear.

The SimBiology root object contains a list of the top-level SimBiology
model objects, available units, unit prefixes and kinetic law objects. A
top-level SimBiology model object has its Parent property set to the
SimBiology root object. A SimBiology model object that has its Parent
property set to another SimBiology model is a submodel and is not
stored by the SimBiology root.

To add an abstract kinetic law to the SimBiology root user-defined
library, use the addtolibrary function. To add a unit to the SimBiology
user-defined library on the root, use the sbioregisterunit function. To
add a unit prefix to the SimBiology user-defined library on the root, use
the sbioregisterunitprefix function.

Shows you the difference between sbioreset and clear all.
1 Import a model into the workspace.

modelObj = sbmlimport('oscillator');

Note that the workspace contains modelObj and if you query the
SimBiology root, there is one model on the root object.

rootObj = sbhioroot

SimBiology Root Contains:

Models: 1
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0

2-21

sbioreset

Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

2 The command clear all clears the workspace, but the model0bj
still exists on the rootObj.

clear all

rootObj

SimBiology Root Contains:

Models: 1
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

3 The command sbioreset deletes the modelObj from the root.

sbioreset
rootObj

SimBiology Root Contains:

Models: 0
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 0
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13

2-22

sbioreset

User Unit Prefixes: 0

See Also sbioroot

2-23

sbiosaveproject (project)

2-24

Purpose

Syntax

Description

Examples

See Also

Save all models in SimBiology root object

sbiosaveproject projFilename

sbiosaveproject projFilename variableName
sbiosaveproject projFilename variableNamel variableName2
variableName3

sbiosaveproject projFilename saves all models in the SimBiology root
object to the binary SimBiology project file named projFilename.sbproj.
The project can be loaded with sbioloadproject. SimBiology returns
an error if projFilename.sbproj is not writable.

sbiosaveproject creates the binary SimBiology project file named
simbiology.sbproj. SimBiology returns an error if this is not writable.

sbiosaveproject projFilename variableName saves only variableName .
variableName can be a SimBiology model or any MATLAB variable.

sbiosaveproject projFilename variableNamel variableName2
variableName3 saves variableName1, variableName2, and variableName3.

Use the functional form of sbiosaveproject when the filename or
variable names are stored in string. For example if the filename is
stored in the variable fileName and you want to store MATLAB variables
variableName1 and variableName2, type sbiosaveproject (fileName,
'variableName1', ’variableName2') at the command line.

1 Import an SBML file and simulate (default configset object is used).

modelObj = sbmlimport ('oscillator.xml');
timeseriesObj = sbiosimulate(modelObj);

2 Save the model and the simulation results to a project.

sbiosaveproject myprojectfile modelObj timeseriesObj

sbioloadproject, sbiowhos, sbioaddtolibrary,
sbioremovefromlibrary

sbioselect

Purpose

Syntax

Arguments

Description

Search for SimBiology objects with specified constraints

Out = sbioselect(Obj, ’PropertyName’, PropertyValue)

Out =

sbioselect(Obj, 'Type', ’TypeValue’,’PropertyName’ ,PropertyValue)
Out = sbioselect(Obj,

'"Where', ’PropertyName', Condition, PropertyValue)

Out = sbioselect(Obj, 'Where', 'PropertyNamet', 'Conditioni',
PropertyValueft,
'Where', 'PropertyName2’,'Condition2' ,PropertyValue2,...)

out= sbioselect(Obj, 'depth', Number,...)

0bj SimBiology object to search

PropertyName Any property of Obj

PropertyValue Valid PropertyValue

TypeValue Type of SimBiology object to search, for example
species, reaction, kineticlaw

Condition Constraint to impose on the search. See table

below for a list of Conditions.

sbioselect searches for objects with specified constraints.

Out = sbioselect(0Obj, ’PropertyName’, PropertyValue) finds the

objects with the property name (PropertyName) and property value
(Propertyvalue) contained in any SimBiology object (0bj) or an array of
SimBiology objects.

Out =

sbioselect(Obj, 'Type', ’TypeValue’,’PropertyName’,PropertyValue) finds
the objects of Type, TypeValue, with the property name (PropertyName)
and property value (PropertyVvalue) contained in any SimBiology object
(Obj) or an array of SimBiology objects. TypeValue is the type of
SimBiology object for example species, reaction, or kineticlaw.

2-25

sbioselect

Out = sbioselect(Obj, 'Where',’PropertyName', Condition,
propertyvalue) finds objects that have a property name (PropertyName)
and value (PropertyValue) that matches the condition (Condition).

Condition Example Example Propertyvalue
PropertyName

> InitialAmount 50

> InitialAmount 50

== InitialAmount 50
==j Name X

= InitialAmount 50

~=1 Name X

>= InitialAmount 50

<= InitialAmount 50

between InitialAmount [200 300]

~between InitialAmount [200 300]

contains Reactant Species or species object array
regexp Name Value*

~regexp Name Value*

regexpi Name Value*

~regexpi Name Value*

Out = sbioselect(Obj, 'Where',

'PropertyNameil','Condition1', PropertyValueft,

'Where', ’PropertyName2’,'Condition2',PropertyValue2,...) finds the
object contained by Obj that matches all the conditions specified.

Any combination of property name/property value pairs and conditions
can be combined in the sbioselect command.

2-26

sbioselect

out= sbioselect(Obj, 'depth', Number,...) finds objects using a model
search depth of Number. Valid numbers are positive integer values and
inf. If Number is inf, Obj and all of its children are searched. If Number
is 1, children of Obj will not be searched. By default, Number is inf.

® The condition types supported for numeric properties are >, <, =,
~=,>= between and ~between. Conditions for range are ’between’
and ’~between’

PName= sbioselect (InitialAmount, 'Between', [200, 300])

® The condition types supported for string properties are ==, ==i, ~=,
~=1i, regexp, ~regexp, regexpi and ~regexpi. Case conditions are
’CaseSensitive’ and 'CaselInsensitive’. The CaseSensitive and
Caselnsensitive conditional values can by used only for those
properties whose values are strings. If they are used on a property
whose value is not a string, it is ignored.

Out = sbioselect(Robj, 'Name', 'CaseSensitive', MyModel)

® The condition 'Contains' can be used only for those properties
whose values are an array of SimBiology objects. The value for
Contains is one of the objects that should be in the array. PValue is
a species or species object array

Out = sbioselect(reactionObj, 'Reactant', 'Contains’',
modelObj .Species)

* The regexp and regexpi conditional value supports any of the
expressions supported by the functions regexp and regexpi
(regexp). When a string property value is searched for without
specifying a condition, it must use the same format as get returns.
For example, if get returns the Name as 'MyObject’, sbioselect will
not find an object with a Name property value of ‘myobject’.

Out = sbioselect(Robj, 'Name', 'RegExp', T*)

2-27

sbioselect

¢ Conditions for relational operators: >, <, =, ~=, >=, <=
Propertyname=InitialAmount, Condition is >, and PropertyValue=50.
Examples Find all SimBiology reactions of SimBiology model (mode10bj), that
use species A as a reactant.
speciesA = sbioselect(modelObj, 'Type', 'species', 'Name',
‘A

out = sbioselect(modelObj, 'Type', 'reaction', 'Where',
'Reactants', 'contains', speciesA);

Find all SimBiology species of SimBiology model (model0bj), that have
an InitialAmount that range between 100 and 300.

out = sbioselect(m, 'Type', 'species', 'Where',
"InitialAmount', 'between', [100 3001]);

See Also regexp

2-28

sbioshowunitprefixes (unit)

Purpose

Syntax

Description

Examples

See Also

Return information about registered unit prefixes

Name = sbioshowunitprefixes

[Name, Multiplier] = sbioshowunitprefixes
[Name, Multiplier, Builtin]

= sbioshowunitprefixes

[Name, Multiplier, Builtin]

= sbioshowunitprefixes(’Name’)

sbioshowunitprefixes returns information about registered unit
prefixes.

Name = sbioshowunitprefixesreturns the names of the registered unit

prefixes to Name as a cell array of strings.

[Name, Multiplier] = sbioshowunitprefixes returns the multiplier for
each prefix in Name to Multiplier. Multiplier is a cell array of strings.

[Name, Multiplier, Builtin] = sbioshowunitprefixesreturns whether
the unit prefix is built-in or user-defined for each unit prefix in Name to
Builtin. Builtin is an array of logical values. If Builtin is true for a

unit prefix, the unit prefix is built-in. If Builtin is false for a unit prefix,

the unit prefix is user-defined.

[Name, Multiplier, Builtin] = sbioshowunitprefixes(’Name’)returns
the name, exponent and built-in status for the unit prefix with name

Name. Name can be a cell array of strings.

® Name is the name of the prefix. Built-in prefixes are defined based on

the International System of Units (SI).

® Wultiplier shows the value of 10"Exponentthat defines the
relationship of the unit Name to the base unit. For example the
multiplier in picomole is 10e-12.

[name, multiplier] sbioshowunitprefixes;
[name, multiplier] = sbioshowunitprefixes('nano');

sbioregisterunit, sbioshowunits, sbioconvertunits

2-29

sbioshowunits (unit)

2-30

Purpose

Syntax

Description

Return information about registered units

Name = sbioshowunits

[Name, Composition] =

sbioshowunits

[Name, Composition, Multiplier]

= sbioshowunits

[Name, Composition, Multiplier, Offset]
= sbioshowunits

[Name, Composition, Multiplier, Offset,
Builtin] = sbioshowunits

[Name, Composition, Multiplier, Offset,
Builtin] = sbioshowunits('Name')

Name = sbioshowunits returns the names of the registered units to Name
as a cell array of strings.

[Name, Composition] = sbioshowunits returns the composition for each
unit in Name to Composition as a cell array of strings.

[Name, Composition, Multiplier] = sbioshowunits returns the multiplier
for the unit with name Name to Multiplier.

[Name, Composition, Multiplier, Offset] = sbioshowunits returns the
offset for the unit with name Name to 0ffset. The unit is defined as
Multiplier*Composition+Offset.

[Name, Composition, Multiplier, Offset, Builtin] = sbioshowunits
returns whether the unit is built-in or user-defined for each unit in
Name to Builtin. Builtin is an array of logical values. If Builtin is true
for a unit, the unit is built-in. If Builtin is false for a unit, the unit

is user-defined.

[Name, Composition, Multiplier, Offset, Builtin] =
sbioshowunits('Name') returns the name, composition,

multiplier, offset and built-in status for the unit with name Name. Name
can be a cell array of strings.

sbioshowunits (unit)

® Name is the name of the built-in or user-defined unit. Name must begin
with characters and can contain characters, underscores or numbers.

® Composition shows the combination of base and derived units that
defines the unit Name. For example molarity is mole/liter.

® Multiplier is the numerical value that defines the relationship
between the unit Name and the base or derived unit as a product of the
Multiplier and the base unit or derived unit. For example 1 mole is
6.0221e23*molecule. The Multiplier is 6.0221e23.

® Offset is the numerical value by which the unit composition
is modified from the base unit. For example °Celsius =
(5/9)* (°Fahrenheit-32); Multiplier is 5/9 and Offset is 32.

Examples [name, composition] = sbioshowunits;
[name, composition] = sbioshowunits('molecule');
See Also sbioregisterunit, sbioshowunitprefixes, sbioconvertunits

2-31

sbiosimulate

Purpose Simulate SimBiology model object
Syntax [T,X] = sbiosimulate (modelObj)
[7,X]

= sbiosimulate (modelObj, configsetObj)
timeseriesObj = sbiosimulate (modelObj)

Description [T,X] = sbiosimulate(modelobj) simulates a model object (model0bj)
using the active configuration set attached to the model (model0bj).

* modelObj — SimBiology model object. Enter the variable name for
a model object.

[T,X] = sbiosimulate(modelObj, configsetObj) simulates a model object
(modelObj) using a configuration set (configset) that overrides the active
configuration set attached to the model (model0bj). After command

is executed this override does not exist; the configuration set that is
defined as ’active’ is reinstated.

® configsetObj — A configset object stores simulation specific
information. A SimBiology model can contain multiple configuration
sets with only one being active at any given time. The active
configuration set contains the settings that are used during the
simulation.

® T — 1-by-n vector where n is the number of times the reactions fired.
T defines the time steps of the firing of the reactions.

® X — n-by-m matrix where n is the number of times the reactions
fired and m is the number of species in the model or the number of
StatesToLog. Each column of X defines the variation in the amount
of a species over time. To get the simulation values for the first
species logged

FirstSpecies = X(:,1)

timeseriesObj = sbiosimulate(modelObj) simulates a model object
(modelObj) using the active configuration set attached to the

2-32

sbiosimulate

Property
Summary

model (modelObj) and returns the results to time series object
(timesereiesObj).

Use timeseriesObj.time to access the time vector from the simulation
results. Use timeseriesObj.data to access the state matrix from the
simulation results. timeseriesObj also contains information about the
configuration set used to simulate the model. Use get (timeseries0Obj)
to view this information.

To get the configuration sets attached to a model, use getconfigset. To
attach a new or existing configuration set to a model, use addconfigset.
To set the active configuration set of a model, use setactiveconfigset.
To use command line help to get more information on these methods, for
example, ’help SimBiology.Model.getconfigset’.

Configuration set property summary

Active Property to indicate object use
during a simulation

CompileOptions Property holding dimensional
analysis and unit conversion
information

Name Property with name of object

Notes Property with HTML text
describing SimBiology object

RuntimeOptions Property holding options for
logged species

SolverOptions Property holding the model solver
options

SolverType Property to select solver type for
simulation

StopTime Property to set the stop time for

a simulation

2-33

sbiosimulate

2-34

Example 1

Example 2

StopTimeType Property to specify the type of

stop time for a simulation

TimeUnits Property to show the stop time

units for a simulation

Type Property to indicate SimBiology

object type

Create a SimBiology model from an SBML file, simulate the model
using a solver other than the default solver (default is ode15s), and

view the results.
1 Read the file for theoscillator model.
modelObj = sbmlimport('oscillator.xml');
2 Get the active configset.
configsetObj = getconfigset(modelObj, 'active');
3 Configure the SolverType to ode45 and set StopTime to 10.

set(configsetObj, 'SolverType', 'ode45');
set(configsetObj, 'StopTime', 10);

4 Simulate modelObj.
[t,x]= sbiosimulate(modelObj);
5 Plot the results of the simulation.

plot(t, x)

Simulate the above example with DimensionalAnalysis off (set to

false).

sbiosimulate

1 Repeat steps 1 and 2 above, then set dimensional analysis and unit
conversion off in the configset object. DimensionalAnalysis and
UnitConversion are properties of the CompileOptions object in the
configset object.

set(configsetObj.CompileOptions, 'UnitConversion', false);
set(configsetObj.CompileOptions, 'DimensionalAnalysis', false);

2 Simulate modelObj.
timeseriesObj = sbiosimulate(modelObj);

3 Plot the results of the simulation.

plot(timeseriesObj.Time, timeseriesObj.Data);
legend(timeseriesObj.SpeciesNames)

See Also SimBiology object constructor sbiomodel, model object method
addconfigset

2-35

sbiounitcalculator (unit)

2-36

Purpose

Syntax

Description

Example

See Also

Convert value between units

result = sbiounitcalculator('fromunits',
"toUnits', Value)

result = sbiounitcalculator('fromunits', 'toUnits', Value) converts
the value, Value which is defined in the units, fromUnits to the value,
result, which is defined in the units, tounits.

result = sbiounitcalculator('mile/hour', 'meter/second',1)

sbioshowunits

sbiounregisterunit (unit)

Purpose Remove user-defined unit from root and library
Syntax sbiounregisterunit('Name')
Description sbiounregisterunit('Name') removes the user-defined unit with the

name, Name from the user-defined library. You cannot remove a unit
from the built-in library. If Name is a user-defined unit, then it is
removed from the UserDefinedUnits vector on the SimBiology root
object and also from the user library. Once unregistered, this unit is not
available in future MATLAB sessions. You can list the available units
and find information on whether the unit is built-in or user-defined
using sbiowhos or shioshowunits.

Example 1 Create units for the rate constants of a first order and second order
reactions.
sbioregisterunit('firstconstant', '1/second', 1);
sbioregisterunit('secondconstant', '1/molecule*second', 1);

2 Display the unit using the command sbiowhos

sbiowhos -userdefined -unit

SimBiology UserDefined Units

Index: Name: Composition: Multiplier: Offset:
1 firstconstant 1/second 1.000000 0.000000
2 secondconstant 1/molecule*second 1.000000 0.000000

3 Unregister one of the units and display the user-defined units
available.

sbiounregisterunit('firstconstant');
sbiowhos -userdefined -unit

2-37

sbiounregisterunit (unit)

SimBiology UserDefined Units

Index: Name: Composition: Multiplier: Offset:
1 secondconstant 1/molecule*second 1.000000 0.000000
See Also sbioshowunits, sbioregisterunit, sbiounregisterunitprefix,

sbioroot, sbiowhos

2-38

sbiounregisterunitprefix (unit)

Purpose Remove user-defined unit prefix from root and library .
SYI‘I"CIX sbiounregisterunitprefix('Name')
Description sbiounregisterunitprefix('Name') removes the user-defined unit prefix

with the name, Name from the user-defined library. You cannot remove a
unit prefix from the built-in library. If Name is a user-defined unit prefix,
it is removed from the UserDefinedUnits vector on the SimBiology root
object and also from the user library. Once unregistered, this unit prefix
is not available in future MATLAB sessions. You can list the available
unit prefixes and find information on whether the unit prefix is built-in
or user-defined using sbiowhos or shioshowunitprefixes.

Example 1 Register a unit prefix.
sbioregisterunitprefix('peta', 15);
sbiowhos -userdefined -unitprefix
SimBiology UserDefined Unit Prefixes

Index: Name: Multiplier:
1 peta 1.000000e+015

2 Unregister the unit prefix.

sbiounregisterunitprefix('peta');

See Also sbioshowunitprefixes, sbioshowunits, sbioregisterunitprefix,
sbiounregisterunit, sbioroot, sbiowhos

2-39

sbiowhos (project)

Purpose

Syntax

Description

2-40

Show contents of project file, library file or SimBiology root object

sbiowhos flag
sbiowhos ('flag"')
sbiowhos flag? flag2 ...
sbiowhos FileName

sbiowhos shows contents of the SimBiology root object. This includes
the built-in and user-defined abstract kinetic laws, units and unit
prefixes.

sbiowhos flag shows specific information about the SimBiology root
object as defined by flag. Valid flags are described in the table below:

Flag Description

-builtin Built-in abstract kinetic laws,
units and unit prefixes.

-data Data saved in file.

-kineticlaw Built-in and user-defined abstract
kinetic laws

-unit Built-in and user-defined units.

-unitprefix Built-in and user-defined unit
prefixes.

-userdefined User-defined abstract kinetic

laws, units and unit prefixes.

You can also specify the functional form, sbiowhos ('flag')

sbiowhos flag? flag2 ... shows information about the SimBiology root
object as defined by flag1, flag2,...

sbiowhos FileName shows contents of SimBiology project or library
defined by Name.

sbiowhos (project)

Examples

o°

Show contents of the SimBiology root object
sbiowhos

% Show abstract kinetic laws on the SimBiology root object
sbiowhos -kineticlaw

% Show the builtin units of the SimBiology root object.
sbiowhos -builtin -unit

o°

Show all contents of project file.
sbiowhos myprojectfile

o°

Show abstract kinetic laws from a library file.
sbiowhos -kineticlaw mylibraryfile

% Show all contents of multiple files.
sbiowhos myfile1 myfile2

See Also MATLAB function whos

2-41

sbmlimport

2-42

Purpose
Syntax

Arguments

Description

Example

Import Systems Markup Language (SBML) formatted file

modelObj = sbmlimport('FileName")

FileName XML file with an Systems Biology Markup Language
(SBML) format. Enter either a filename or a path and
filename supported by your operating system.

modelObj = sbmlimport('FileName') imports a SBML formatted file with
name FileName into MATLAB and creates a model object modelObj.
FileName extensions can be .sbml or .xml. ThemodelObj properties can
be viewed with the get command. modelObj properties can be modified
with the set command. At the command line help for model0bj
functions can be returned with the sbiohelp command.

Functional Characteristics and Limitations

e sbmlimport supports SBML Levels 1 and 2.

o If there are MATLAB incompatible variable names in any
mathematical expression (for example, rules or rate expressions).
SimBiology inserts brackets around those variable names in that
expression.

e If the model has a single compartment, the model is read in as a
top-level model. If there are multiple compartments, SimBiology
returns a warning and does not read the SBML file.

* SimBiology does not support model volume and volume units,
function definitions, events, and piecewise kinetics.

¢ SimBiology does not support brackets in species or parameter names.

sbmlobj = sbmlimport('oscillator.xml');

sbmlimport

Reference Finney, A., Hucka, M., (2003), Systems Biology Markup Language

(SBML) Level 2: Structures and facilities for model definitions. Accessed
from SBML.org

See Also sbmlexport, sbiosimulate
MATLAB functions get and set

2-43

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html

sbmlexport

Purpose Export SimBiology model to SBML file
Syntax sbmlexport(modelObj, 'FileName')
Arguments
modelObj Model object. Enter a variable name for a model object.

FileName XML file with an Systems Biology Markup Language
(SBML) format. Enter either a filename or a path and
filename supported by your operating system. If the
filename does not have the extension .xml, then .xml
is appended to end of the filename.

Description sbmlexport(modelObj, 'FileName')exports a SimBiology model object
(Mobj) to a file with a Systems Biology Markup Language (SBML) Level
2 format. The default file extension is .xml.

A SimBiology model can also be written to a SimBiology project with
the sbiosaveproject function to save features not supported by SBML.

Functional Characteristics and Limitations

The sbmlexport function,

¢ Exports SBML Level 2 compatible files

® Exports SBML compliant unit definitions

® Does not support submodels

® Does not export features that are not supported by SBML. These are,

Abstract kinetic law name and corresponding expression (note
that sbmlexport exports the reaction rate equation)

Configurations sets
= Active property

"= UserData

2-44

sbmlexport

= Tag

Example Export a model (model0Obj) to a file (gene_regulation.xml) in the
current working directory.

sbmlexport(modelObj, 'gene_regulation.xml');

Reference Finney, A., Hucka, M., (2003), Systems Biology Markup Language
(SBML) Level 2: Structures and facilities for model definitions. Accessed
from SBML.org

See Also sbmlimport, sbiomodel, shiosaveproject

2-45

http://sbml.org/specifications/sbml-level-2/version-1/html/sbml-level-2.html

Methods — Categorical List

This chapter is a reference for the object methods in SimBiology. Methods are

grouped into the following categories.

Abstract Kinetic Laws (p. 3-2)

Configuration Sets (p. 3-3)
Kinetic Laws (p. 3-4)

Models (p. 3-5)

Parameters (p. 3-6)

Reactions (p. 3-7)

Root (p. 3-8)

Rules (p. 3-9)

Species (p. 3-10)

Using Object Methods (p. 3-11)

Methods for abstract kinetic law
objects

Methods for configuration set objects
Methods for kinetic law objects.
Methods for the model object
Methods for parameter objects
Methods for reaction objects
Methods for the root object

Methods for rule objects

Methods for species objects

Command line syntax for entering
and retrieving property values

3 Methods — Categorical List

Abstract Kinetic Laws

Methods for abstract kinetic law objects

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object

display (any object) Display summary of SimBiology
object

3-2

Configuration Sefs

Configuration Sets
Methods for configuration set objects.

copyobj (any object)

display (any object)

Copy SimBiology object and its
children

Display summary of SimBiology
object

3-3

3 Methods — Categorical List

3-4

Kinetic Laws
Methods for kinetic law objects.

addparameter (model,
kineticlaw)
copyobj (any object)

delete (any object)
display (any object)

getparameters (kineticlaw)
getspecies (kineticlaw)
setparameter (kineticlaw)

setspecies (kineticlaw)

Add parameter object to model or
kinetic law object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Get specific parameters in kinetic
law object

Get specific species in kinetic law
object

Specify specific parameters in kinetic
law object

Specify species in kinetic law object

Models

Models

Methods for model objects.

addconfigset (model)

addmodel (model)

addparameter (model,
kineticlaw)

addreaction (model)
addrule (model)
addspecies (model)

copyobj (any object)

delete (any object)
display (any object)

getadjacencymatrix (model)

getconfigset (model)

getstoichmatrix (model)

removeconfigset (model)

setactiveconfigset (model)

Add configuration set object to model
object

Add submodel object to model object

Add parameter object to model or
kinetic law object

Add reaction object to model object
Add rule object to model object
Add species object to model object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Return adjacency matrix from model
object

Get configuration set object from
model object

Return stoichiometry matrix from
model object

Remove configuration set from model

Set the active configuration set for
model object

3-5

3 Methods — Categorical List

Parameters
Methods for parameter objects

copyobj (any object)

delete (any object)
display (any object)

3-6

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Reactions

Reactions

Methods for reaction objects

addkineticlaw (reaction)

addproduct (reaction)

addreactant (reaction)

copyobj (any object)

delete (any object)
display (any object)

rmproduct (reaction)

rmreactant (reaction)

Add kinetic law object to reaction
object

Add product species object to
reaction object

Add species object as a reactant to
reaction object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Remove species object from reaction
object products

Remove species object from reaction
object reactants

3-7

3 Methods — Categorical List

Root

Methods for the root object.

copyobj (any object)

delete (any object)

reset (root)

3-8

Copy SimBiology object and its
children

Delete SimBiology object

Delete all model objects from the
root object

Rules

Rules

Methods for rule objects.

copyobj (any object)

delete (any object)
display (any object)

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

3-9

3 Methods — Categorical List

Species

Methods for species objects.

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object

display (any object) Display summary of SimBiology
object

3-10

Using Object Methods

Using Object Methods

Command line syntax for using methods with SimBiology objects.

Constructing (Creating) Objects
(p. 3-11)

Using Object Methods (p. 3-11)

Help for Objects, Methods and
Properties (p. 3-12)

Constructing (Creating) Objects

Create an object that is not referenced by a model using the constructor
functions sbioabstractkineticlaw, sbiomodel, sbioparameter, sbioreaction,
sbioroot, sbiorule, and sbiospecies.

ObjectName = ConstructorFunction(RequiredParameters,...
'"PropertyName', PropertyValue')

To create objects referenced by a model, use the model object methods
addconfigset, addmodel, addparameter, addreaction, addrule, and addspecies.

ObjectName = ModelName.Method(Arguments)

To create objects references by a reaction, us the reaction object methods
addkineticlaw, addparemeter, addproduct, and addreactant.

ObjectName = ReactionName.Method(Arguments)
Note, ObjectName is not a copy of the object but a pointer to the created object.

Using Object Methods
Using MATLAB function notation.

MethodName (ObjectName, arguments, ...)

Using object dot notation.

ObjectName.MethodName (arguments, ...)

3-11

3 Methods — Categorical List

3-12

Help for Objects, Methods and Properties

Display information for SimBiology object methods and properties in the
MATLAB Command Window.

help sbio Display a list of functions and
methods.

help FunctionName Display function information.

sbiohelp('MethodName"') Display method information.

sbiohelp('PropertyName') Display property information.

Methods — Alphabetical
List

The object that the methods apply to are listed in parenthesis after the
method name.

addconfigset (model)

4-2

Purpose
Syntax

Arguments

Description

Add configuration set object to model object

configsetObj = addconfigset (modelObj, ’NameValue’)

modelObj Model object. Enter a variable name.

NameValue Descriptive name for a configuration set object.
Reserved words ’active’ and ’default’ are not
allowed.

configsetObj Configuration set object.

configsetObj = addconfigset(modelObj, ’NameValue’) creates a
configuration set object and returns a pointer (configset0Obj) to the
object.

In the configuration set object, this method assigns a value (NameValue)
to the property Name.

A configuration set stores simulation specific information. A model
object can contain multiple configuration sets, with one being active
at any given time. The active configuration set contains the settings
that are used during a simulation.configsetObj is not automatically set
to active. Use the function setactiveconfigset to define the active
configset for modelObj.

Use the method copyobj to copy a configset object and add it to the
modelObj.

You can view additional configuration set object properties with the
function get. You can change additional model object properties with
the function set.

addconfigset (model)

Method Methods for configuration set objects
Summary
copyobj (any object) Copy SimBiology object and its
children
display (any object) Display summary of SimBiology
object
Property Properties for configuration set objects
Summary
Active Property to indicate object use
during a simulation
CompileOptions Property holding dimensional
analysis and unit conversion
information
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
RuntimeOptions Property holding options for
logged species
SolverOptions Property holding the model solver
options
SolverType Property to select solver type for
simulation
StopTime Property to set the stop time for

a simulation

StopTimeType Property to specify the type of
stop time for a simulation

TimeUnits Property to show the stop time
units for a simulation

Type Property to indicate SimBiology
object type

4-3

addconfigset (model)

4-4

Examples 1 Create a model object by reading the file oscillator.xml and add a
configuration set that simulates for 3000 seconds.
modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');
2 Configure the configsetObj StopTime to 3000.
set(configsetObj, 'StopTime', 3000)
get(configsetObj)
Active: 0
CompileOptions: [1x1 SimBiology.CompileOptions]
Name: 'myset’
Notes: ''
RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.ODESolverOptions]
SolverType: 'odel15s'
StopTime: 3000
StopTimeType: 'simulationTime'
TimeUnits: 'second'
Type: 'configset'
3 Set the new configset to be active, simulate the model using the
new configset, and plot the result.
setactiveconfigset(modelObj, configsetObj);
[t,x] = sbiosimulate(modelObj);
plot (t,x)
See Also model object methods getconfigset, removeconfigset,

setactiveconfigset

MATLAB functions get and set.

addkineticlaw (reaction)

Purpose Add kinetic law object to reaction object
SYI‘I"CIX kineticlawObj = addkineticlaw(reactionObj, ’KineticLawNameValue’)
kineticlawObj= addkineticlaw(..., ’PropertyName’,
PropertyValue, ...)
Arguments
reactionObj Reaction object. Enter a variable name

for a reaction object.

KineticLawNameValue Property to select the type of kinetic law
object to create. Enter either MassAction
or Heneri-Michelis-Menten.

Description kineticlawObj = addkineticlaw(reactionObj, ’KineticLawNameValue’)
creates a kinetic law object and returns a pointer (kineticlawObj) to
the object.

In the kinetic law object, this method assigns a name
(KineticLawNameValue) to the property KineticLawName and assigns
the reaction object to the property Parent. In the reaction object, this
method assigns the kinetic law object to the property KineticlLaw.

modelObj = sbiomodel('cell');

reactionObj = addreaction(modelObj, 'a -> b');

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
parameterObj = addparameter(kineticlawObj, 'K1_forward', 0.1);
set(kineticlawObj, ParameterVariableName, 'K1_forward');

4-5

addkineticlaw (reaction)

4-6

modelObj
/ model Obf. Mame = ‘cell \
modefObj.Reactions(1)
mode/Of Reactions(1). Reaction="a-= b’ \
modelOb Reactions(1).Parent = mode/Ob)
(/— modefObj.Reactions(1).KineticLaw(1) \.\I
mode/Of Reactions(1).KineticLaw Type = 'MassAction’

mode/0&f Reactions(1).KineticLaw Parent = reactionObj
mode/Of Reactions(1).KineticLaw. Farameters = pamimeterOhy

modelObj.Reactions(1).KineticLaw.Parameters(1)

mode/Off Reactions(1). KinetidLaw . Parameters(1).Mame = ‘K1_forward’
mode/Of Reactions(1). KineticLaw.Farameters(1).Value = 0.1
mode/O8 Reactions(1).KineticLaw.Farameters(1).Parent = kinetidawOb,

(S ﬂ

KineticLawNameValue is any valid abstract kinetic law. See “Abstract
Kinetic Law” on page 6-27 for a definition of abstract kinetic laws and
more information about how they are used to get the reaction rate
expression.

You can find valid KineticLawNameValues by querying the SimBiology root
object with the commands: get(sbioroot, 'BuiltInKineticLaws'),
and get(sbioroot, 'UserDefinedKineticLaws').sbiowhos
-kineticlaw lists BuiltInKineticLaws and UserDefinedKineticLaws
in the SimBiology root. The root contains all BuiltInKineticLaws and
all UserDefinedKineticLaws that are added using sbioaddtolibrary
or addtolibrary.

kineticlawObj= addkineticlaw(..., ’PropertyName’, PropertyValue,

.) constructs a kinetic law object, kineticlawObj, and configures
kineticlawObj with property value pairs. The property name/property
value pairs can be in any format supported by the function set (for
example, name-value string pairs, structures, and name-value cell
array pairs). The kineticlawObj properties are listed below in the
property summary.

addkineticlaw (reaction)

Method
Summary

Property
Summary

You can view additional kinetic law object properties with the command,
get . You can modify additional kinetic law object properties with the
command, set . The kinetic law used to determine the ReactionRate of
the Reaction can be viewed with get (reactionObj, 'KineticLaw').
Remove a SimBiology kinetic law object from a SimBiology reaction

object with the command, delete.

Methods for kinetic law objects

addparameter (model,
kineticlaw)
copyobj (any object)

delete (any object)
display (any object)

getparameters (kineticlaw)

getspecies (kineticlaw)

setparameter (kineticlaw)

setspecies (kineticlaw)

Properties for kinetic law objects

Annotation

Expression

Add parameter object to model or
kinetic law object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Get specific parameters in kinetic
law object

Get specific species in kinetic law
object

Specify specific parameters in
kinetic law object

Specify species in kinetic law
object

Property with information about
a SimBiology object

Property containing the
expression used to determine the
reaction rate equation

4-7

addkineticlaw (reaction)

4-8

Examplel

KineticLawName

Name

Notes

Parameters

ParameterVariableNames

ParameterVariables

Parent

SpeciesVariables

SpeciesVariablesNames

Tag

Type

UserData

Property showing name of
abstract kinetic law

Property with name of object

Property with HTML text
describing SimBiology object

Property with array of parameter
objects

Property showing cell array of
reaction rate parameters

Property showing parameters in
abstract kinetic law

Property indicating the parent
object

Property showing species in
abstract kinetic law
Property showing cell array of

species used in reaction rate
equation

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to
associate with object

This example uses the built-in kinetic law Henri-Michaelis-Menten.

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('Cell');

reactionObj = addreaction (modelObj,

'Substrate -> Product');

addkineticlaw (reaction)

2 Define an abstract kinetic law for the reaction object and view the
parameters to be set.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');
get (kineticlawObj, 'Expression')

ans =
Vm*[S]/(Km + [S])

SimBiology adds an abstract kinetic law expression to the reaction
object (reactionObj).

The Henri-Michaelis-Menten kinetic law has two parameters
(Vmand, Km) and one species (S). You need to enter values for these
parameters by first creating parameter objects, and then adding the
parameter objects to the kinetic law object.

3 Add parameter objects to a kinetic law object. For example, create a
parameter object parameterObj1 named Vm_d, another paramter
parameterObj2) named Km_d, and add them to a kinetic law object
(kineticlawObj).

parameterObj1 = addparameter(kineticlawObj, 'Vm_d', 'Value', 6.0);
parameterObj2 = addparameter(kineticlawObj, 'Km_d', 'Value', 1.25);

SimBiology creates two parameter objects with concrete values that
will be associated with the abstract kinetic law parameters.

4 Associate concrete kinetic law parameters with the abstract kinetic
law parameters.

set(kineticlawObj, 'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj, 'SpeciesVariableNames', {'Substrate'});

SimBiology associates the concrete parameters in the property
ParameterVariablesNames with the abstract parameters in the
property ParameterVariables using a one-to-one mapping in the
order given.

4-9

addkineticlaw (reaction)

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')

ans =
Vm_d*Substrate/ (Km_d+Substrate)

6 Enter an initial value for the substrate and simulate.

modelObj.Species(1).InitialAmount = 8;
[T, X] = sbiosimulate(modelObj);

plot(T,X)
<) Figure 1 M=l E3
File Edit Wiew Insert Tools Desktop ‘Window Help N
D& hfRaM®(v 0B 0O
9
at
i\ Froduct |
6l |
ET]
£
WAt]
g 3 Substrate |
2t |
1t |
0F
_1 1 | 1 |
0 2 4 B g 10
Time (seconds)

4-10

addkineticlaw (reaction)

Example2 Example using the built-in kinetic law MassAction.
1 Create a model object, and then add a reaction object.

modelObj = sbiomodel ('Cell');
reactionObj = addreaction (modelObj, 'a -> b');

2 Define an abstract kinetic law for the reaction object.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
get(kineticlawObj, 'Expression')

ans =
MassAction

Notice, the property Expression for an abstract kinetic law with
property Type set to MassAction does not show the parameters and
species in the reaction rate.

3 Assign the rate constant for the reaction.

parameterObj = addparameter(kineticlawObj, 'k_forward');
set (kineticlawObj, 'ParameterVariablenames', 'k _forward');

get (reactionObj, 'ReactionRate')

ans =
k_forward*a

4 Enter an initial value for the substrate and simulate.
modelObj.Species(1).InitialAmount = 100;
[T, X] = sbiosimulate(modelObj);
plot(T,X)

The value used for k_forward is default value = 1.0.

4-11

addkineticlaw (reaction)

<) Figure 1 M=l E3
'}

File Edit Wiew Insert Tools Desktop indow Help

100
30
80
Fil|
a1l
a0
40

Species Armounts

30
20
10

I:I 1 1
0 2 4 a] g 10

Time (seconds)

See Also SimBiology method for model object addreaction, and method for
kinetic law object setparameter

4-12

addmodel (model)
|

Purpose Add submodel object to model object
Syntax submodelObj = addmodel (modelObj,
'NameValue')
submodelObj = addmodel(...’PropertyName', PropertyValue...)
Arguments
modelObj Model object. Enter a name for a model object.
NameValue Descriptive name for a model object. Enter a

unique character string. A model object can be
referenced by other objects using this property.

submodelObj Model object to be added as submodel.

Description submodelObj = addmodel (modelObj, 'NameValue') creates a submodel
object and returns a pointer (submodel0Obj)to the object. In the submodel
object, this method assigns a value (NameVvalue) to the property Name,
and assigns the model object (modelObj) to the property Parent. In the
model object, this method assigns the submodel object to the property
Models.

modelObj = sbiomodel('cell’)

submodelObj = addmodel('nucleus')
modelObj

model0bi Name = ‘cell’
modelObj.Models(1)

modelObj. Models(1).Name = ‘nucleus’
modelObj. Models(1).Parent = modelObj

A model object must have a unique name at the level it is created.
For example, if you create a model with the name cell, you cannot
create another model object named cell. However, a model object can

4-13

addmodel (model)

contain a submodel object named cell which can contain a submodel
object named cell.

modelObj does not have access to submodelObj parameters. However,
submodelObj does have access and can use modelObj parameters.

submodelObj = addmodel(...’PropertyName', PropertyValue...)defines
optional property values. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

You can view additional model object properties with the function get.
You can change additional model object properties with the function
set. You can view the submodel objects of mode10bj with the command,
get(modelObj, 'Models').

Examples modelObj = sbiomodel('cell');
submodelObj addmodel(modelObj, 'nucleus');
submodelObj = addmodel(modelObj, 'cytoplasm');

See Also sbiomodel

4-14

addparameter (model, kineticlaw)

Purpose

Syntax

Arguments

Description

Add parameter object to model or kinetic law object

parameterObj = addparameter(0bj,

'NameValue')

parameterObj = addparameter(Obj, 'NameValue', ValueValue)
parameterObj addparameter(...’PropertyName', PropertyValue...)

Obj Model or kinetic law object. Enter a variable
name for the object.

NameValue Property for a parameter object. Enter a unique
character string. NameValue can be a cell array
of parameter names.Since objects can use this
property to reference a parameter, a parameter
object must have a unique name at the level it
is created. For example, a kinetic law object
cannot contain two parameter objects named
kappa. However, the model object that contains
the kinetic law object can contain a parameter
object named kappa along with the kinetic law
object.

ValueValue Property for a parameter object. Enter a
number.

parameterObj = addparameter(Obj, 'NameValue')creates a parameter
object and returns a pointer (parameterObj) to the object. In the
parameter object, this method assigns a value (NameValue) to the
property Name, assigns a value 1 to the property Value, and assigns the
model or kinetic law object to the property Parent. In the model or
kinetic law object, (Obj), this method assigns the parameter object to
the property Parameters.

A parameter object defines an assignment that a model, or a kinetic
law can use. The scope of the parameter is defined by the parameter
parent. If a parameter is defined with a kinetic law object, then only the
kinetic law object and objects within the kinetic law object can use the

4-15

addparameter (model, kineticlaw)

parameter. If a parameter object is defined with a model object as its
parent, then all objects within the model (including all rules, submodels
and kinetic laws) can use the parameter.

modelObj = sbiomodel('cell’)
parameterObj = addparameter(modelObj, 'TF1', 0.01)

modelObj
mode/Ofi Mame = ‘cell’
modelObj.Parameters(1)

model0&f Parameters(1).Mame = TFT'
mode/0&f Parameters(1).Value = 0.01
modelO& Parameters(1).Parent = model/O8)

modelObj = sbiomodel('cell’)

reactionObj = addreaction(modelObj, 'a -> b')

kineticlawObj = addkineticlaw (reactionObj, 'MassAction')
parameterObj = addparameter(kineticlawObj, 'Ki1_forward', 0.1)

modelQhbf
modelOk).Mame = 'cell

! modeiQhbji.Reactions(1)

I mocieiOfy Reactions(1) Reaction="a-= b’
mocieiOn Reactions(1).Parent = moogiCn)
mocieiOny Reactions(1) KineticLaw = Kineticiawlnf

modelObj.Reactions(1).KineticLaw

moceion Reactions (1) KineticLaw Type = "MassAction'
moceiCfy Reactions (1) KineticLaw Parent = reactionCby

model0Obj. Reactions{1).KineticLaw.Parameters{1)

modeiOfy Reactions(1). KineticLaw Parameters(1). Mame = "K1_forward'
modeiOfy Reactions(1) KineticLaw Parameters{1) value = 0.1
mociefon Reactions (). KineticLaw Parametersil). Parent = iinediclawibs

4-16

addparameter (model, kineticlaw)

parameterObj = addparameter(0Obj, 'NameValue', ValueValue)creates a
parameter object, assigns a value (NameValue) to the property Name,
assigns the value (ValueValue) to the property Value, and assigns the
model object or the kinetic law object to the property Parent. In the
model or kinetic law object (0bj), this method assigns the parameter
object to the property Parameters, and returns the parameter object to
a variable (parameteroObj).

parameterObj = addparameter(...’PropertyName',
PropertyValue...)defines optional property values. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

Scope of a parameter — A parameter can be scoped to either a model
or a kinetic law.

® When a kinetic law searches for a parameter in its expression, it first
looks in the parameter list of the kinetic law. If the parameter isn’t
found there it moves to the model that the kinetic law object is in
and looks in the model parameter list. If the parameter isn’t found
there, it moves to the model parent.

® When a rule searches for a parameter in its expression, it looks in
the parameter list for the model. If the parameter isn’t found there,
it moves to the model parent. A rule cannot use a parameter that
is scoped to a kinetic law. So for a parameter to be used in both a
reaction rate equation and a rule, the parameter should be scoped
to a model.

Additional parameter object properties can be viewed with the get
command. Additional parameter object properties can be modified with
the set command. The parameters of Obj can be viewed with get (0bj,
'Parameters’')

A SimBiology parameter object can be copied to a SimBiology model or
kinetic law object with copyobj. A SimBiology parameter object can be
removed from a SimBiology model or kinetic law object with delete.

4-17

addparameter (model, kineticlaw)

4-18

Method
Summary

Property
Summary

Methods for parameter objects
copyobj (any object)
delete (any object)

display (any object)

Properties for parameter objects

Annotation

ConstantValue

Name

Notes

Parent

Tag

Type

UserData

Value

ValueUnits

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Property with information about
a SimBiology object

Property to indicate variable or
constant parameter value

Property with name of object

Property with HTML text
describing SimBiology object
Property indicating the parent
object

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to
associate with object

Property to assign value to
parameter object

Property with parameter value
units

addparameter (model, kineticlaw)

Example 1 Create model object, then add a reaction object.

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object.
kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
3 Add a parameter and assign it to the kinetic law object

(kineticlawObj); add another parameter and assign to the model
object (modelObj).

% Add parameter to kinetic law object
parameterObj1 = addparameter (kineticlawObj, 'K1');
get (kineticlawObj, 'Parameters')

MATLAB returns

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K1 1

% Add parameter with value 0.9 to model object
parameterObj1 = addparameter (modelObj, 'K2', 0.9);

get (modelObj, 'Parameters')
MATLAB returns

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K2 1
See Also MATLAB functions—copyobij,delete

4-19

addproduct (reaction)

4-20

Purpose

Syntax

Arguments

Description

Add product species object to reaction object

speciesObj = addproduct (reactionObj, ’NameValue’)

speciesObj = addproduct (reactionObj, speciesObj)

speciesObj = addproduct (reactionObj,

'NameValue', Stoichcoefficient)

speciesObj = addproduct(reactionObj, speciesObj, Stoichcoefficient)

reactionObj

NameValue

speciesObj

Stoichcoeffieient

Reaction object. Enter a name for the reaction
object.

Property of a species object that names the
object (not the reaction object). Enter a unique
character string. For example, 'fructose
6-phosphate'.A species object can be referenced
by other objects using this property. You can use
the function sbioselect to find an object with a
specific NameValue.

Species object.
Stoichiometric coefficients for products, length

of array equal to length of NameValue or length
of speciesObj.

speciesObj = addproduct(reactionObj, ’NameValue’) creates a
species object and returns a pointer (speciesObj) to the object. In the
species object, this method assigns the value (NameValue) to the property
Name, and assigns the parent object of the reactionobj to the property
Parent. In the reaction object, this method assigns the species object to
the property Products, modifies the reaction equation in the property
Reaction to include the new species, and adds the stoichiometric
coefficient 1 to the property Stoichiometry.

If the parent object (always a model object) of a reaction does not
include a species with the specified name ('NameValue'), a species object

addproduct (reaction)

is created and assigned to the parent object property Species. You can
create a species object with the function sbiospecies, or create and add
a species object to a model object with the method addspecies

speciesObj = addproduct(reactionObj, speciesObj), in the species object
(speciesObj), assigns the parent object of the reaction0Obj to the species
property Parent. In the reaction object (reactionObj), it assigns the
species object to the property Products, modifies the reaction equation
in the property Reaction to include the new species, and adds the
stoichiometric coefficient 1 to the property Stoichiometry.

speciesObj = addproduct(reactionObj, 'NameValue', Stoichcoefficient),
in addition to the description above, this method adds the stoichiometric
coefficient (Stoichcoefficient) to the property Stoichiometry. If
NameValue is a cell array of species names, then Stoichcoefficient
must be a vector of doubles with the same length as NameValue.

speciesObj = addproduct (reactionObj, speciesObj, Stoichcoefficient),in
addition to the description above, this method adds the stoichiometric
coefficient (Stoichcoefficient) to the property Stoichiometry.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the Name of a species SimBiology
updates the reaction to use the new name. You must however configure
all other applicable elements such as rules that use the species, and
the kinetic law object.

See “Valid Species Names” on page 4-37 for more information on species
names.

Example 1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A + C -> U');

2 Modify the reaction of the reactionObj from A + C -> Uto A +
C->U+ 2H.

speciesObj = addproduct(reactionObj, 'H', 2);

4-21

addproduct (reaction)

See Also sbiospecies, addspecies

4-22

addreactant (reaction)

Purpose Add species object as a reactant to reaction object

Syntax speciesObj = addreactant(reactionObj, ’NameValue’)
addreactant (reactionObj, speciesObj, Stoichcoeffieient)
addreactant (reactionObj,

'NameValue', Stoichcoeffieient)

Arguments
reactionObj Reaction object.

NameValue Name property of a species object. Enter
a unique character string, for example,
'glucose 6-phosphate'. A species object
can be referenced by other objects using
this property. You can use the function
sbioselect to find an object with a specific
Name property value.

speciesObj Species object or cell array of species objects.

Stoichcoeffieient Stoichiometric coefficients for reactants,
length of array equal to length of NameValue
or length of speciesObj.

Description speciesObj = addreactant(reactionObj, ’NameValue’) creates a
species object and returns a pointer (speciesObj) to the object. In the
species object, this method assigns the value (NameValue) to the property
Name, and assigns the parent object of the reaction0bj to the property
Parent. In the reaction object, this method assigns the species object to
the property Reactants, modifies the reaction equation in the property
Reaction to include the new species, and adds the stoichiometric
coefficient -1 to the property Stoichiometry.

If the parent object (always a model object) of a reaction does not include
a species with the specified name ('Namevalue'), SimBiology creates a
species object and assigns the parent object of the reaction0Obj to the
parent object property Species. You can create a species object with the

4-23

addreactant (reaction)

4-24

Example

function sbiospecies, or create and add a species object to a model
object with the method addspecies.

addreactant (reactionObj, speciesObj, Stoichcoeffieient), in the species
object (speciesObj), this method assigns the parent object to the
speciesObj property Parent. In the reaction object (reactionObj),

it assigns the species object to the property Reactants, modifies

the reaction equation in the property Reaction to include the new
species, and adds the stoichiometric coefficient -1 to the property
Stoichiometry. If speciesObj is a cell array of species objects, then
Stoichcoeffieient must be a vector of doubles with the same length

as speciesObj.

addreactant (reactionObj, 'NameValue', Stoichcoeffieient), in addition
to the description above, this method adds the stoichiometric coefficient
(Stoichcoeffieient) to the property Stoichiometry. If NameValue is a
cell array of species names, then Coefficient must be a vector of doubles
with the same length as NameValue.

A species object must have a unique name at the level at which it is
created. For example, a model object cannot contain two species objects
named H20. However, a submodel of the model that contains the species
H20 can also contain a species named H20.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the Name of a species SimBiology
updates the reaction to use the new name. You must however configure
all other applicable elements such as rules that use the species, and
the kinetic law object.

See “Valid Species Names” on page 4-37 for more information on species

names.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'A -> U');

2 Modify the reaction of the reactionObj from A ->Utobe A+ 3
C->U.

addreactant (reaction)

speciesObj = addreactant(reactionObj, 'C', 3);

See Also sbiospecies, addspecies

4-25

addreaction (model)

Purpose Add reaction object to model object

Syntax reactionObj = addreaction (modelObj,
'ReactionValue')
reactionObj = addreaction(modelObj,
'ReactantsValue', 'ProductsValue')
reactionObj = addreaction(modelObj ,
'ReactantsValue', RStoichCoefficients,
'ProductsValue', PStoichCoefficients)

reactionObj = addreaction(...’PropertyName', PropertyValue...)
Arguments
modelObj SimBiology model object
ReactionValue Property to specify the reaction equation.

Enter a character string. A hyphen
preceded by a space and right angle bracket
(->) indicate reactants going froward to
products. A hyphen with left and right
angle brackets (<->), indicate a reversible
reaction. Coefficients before reactant or
product names must be followed by a space.
Examples 'A -> B','A + B ->C','2 A +
B ->2C','A <-> B' Enter reactions with
spaces between the species (A + B -> C)

ReactantsValue A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

ProductsValue A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

4-26

addreaction (model)

RStoichCoefficients Stoichiometric coefficients for reactants,
length of array equal to length of
ReactantsValue.

PStoichCoefficients Stoichiometric coefficients for products,
length of array equal to length of
ProductsValue.

Description reactionObj = addreaction(modelObj, 'ReactionValue') creates a
reaction object, assigns a value (ReactionValue) to the property
Reaction, assigns reactant species object(s) to the property Reactants,
assigns the product species object(s) to the property Products, and
assigns the model object to the property Parent. In the Model object
(model0bj), this method assigns the reaction object to the property
Reactions, and returns the reaction object (reactionObj).

reactionObj = addreaction(modelObj, 'a -> b')

modelObj
modelObj.Name = ‘cell

modelObj. Reactions(1)
modelOfy Reactions(1).Reaction ='a-= b’
model/Oby. Parameters(1).Parent = mooelObj

If a species specified in a reaction does not exist, a species object is
created and assigned to the model object property Species. You can
manually add a species to a model object with the method addspecies.

You can add species to a reaction object using the methods addreactant
or addproduct. You can remove species from a reaction object with the

methods rmreactant or rmproduct. The property Reaction is modified
by adding or removing species from the reaction equation.

You can copy a SimBiology reaction object can be copied to a SimBiology
model object with the function, copyobj. You can remove SimBiology
reaction object from a SimBiology model object with the function delete.

You can view additional reaction object properties with the get
command, for example, the reaction equation of reactionObj can be

4-27

addreaction (model)

4-28

Method
Summary

viewed with the command, get (reactionoObj, 'Reaction'). You can
modify additional reaction object properties with the command, set .

reactionObj = addreaction(modelObj, 'ReactantsValue',
"ProductsValue') creates a reaction object, assigns a value to the
property Reaction using the reactant (Reactantsvalue) and product
(ProductsValue) names, assigns the species objects to the properties
Reactants and Products, and assigns the model object to the property
Parent. In the Model object (model0Obj), this method assigns the
reaction object to the property Reactions, and returns the reaction
object (reactionObj). The stoichiometric values are assumed to be 1.

reactionObj = addreaction(modelObj, 'ReactantsValue',
RStoichCoefficients, 'ProductsValue', PStoichCoefficients) adds
stoichiometric coefficients (RStoichCoefficients) for reactant species,
and stoichiometric coefficients (PStoichCoefficients) for product
species to the property Stoichiometry. The length of Reactants
and RCoefficients must be equal, and the length of Products and
PCoefficients must be equal.

reactionObj = addreaction(...’PropertyName',
PropertyValue...)defines optional properties. The

property name/property value pairs can be in any format supported
by the function set (for example, name-value string pairs, structures,
and name-value cell array pairs).

Methods for reaction objects

addkineticlaw (reaction) Add kinetic law object to reaction
object

addproduct (reaction) Add product species object to
reaction object

addreactant (reaction) Add species object as a reactant
to reaction object

copyobj (any object) Copy SimBiology object and its
children

addreaction (model)

delete (any object) Delete SimBiology object

display (any object) Display summary of SimBiology
object

rmproduct (reaction) Remove species object from

reaction object products

rmreactant (reaction) Remove species object from
reaction object reactants

Property Properties for reaction objects
Summary

Active Property to indicate object use
during a simulation

Annotation Property with information about
a SimBiology object

KineticLaw Property showing kinetic law for
ReactionRate

Name Property with name of object

Notes Property with HTML text
describing SimBiology object

Parent Property indicating the parent
object

Products Property to indicate reaction
products

Reactants Property to indicate reaction
reactants.

Reaction Property to indicate the reaction
object reaction

ReactionRate Property containing the reaction

rate equation in reaction object

4-29

addreaction (model)

4-30

Examples

Reversible Property to indicate whether
a reaction is reversible or
irreversible

Stoichiometry Property that describes species

coefficients in a reaction

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Create a model, add a reaction object and assign the expression for
the reaction rate equation.

1 Create a model object, then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten' .

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) and one species variable (S) that should to be
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameter0Obj2) with names
Vm_d, and Km_d, and assign the objects Parent property value to
the kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm d');

addreaction (model)

parameterObj2 = addparameter(kineticlawObj, 'Km d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj, 'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj, 'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')
MATLAB returns

ans =

Vm_d*[a]/(Km_d+[a])

See Also addkineticlaw, addproduct, addreactant, rmproduct, rmreactant

Reaction object methods , , KineticLaw object method— .Reaction
object properties— Active, Annotation, Name, Notes, Parent, Products,
Reactants, Reaction, ReactionRate, KineticLaw, Reversible,
Stoichiometry, Tag, Type, UserData.

4-31

addrule (model)

Purpose Add rule object to model object

Syntax ruleobj = addrule(modelObj,
'RuleValue')
ruleObj = addrule(modelObj,
'RuleValue', 'RuleTypeValue')
ruleObj = addrule(..., ’PropertyName', PropertyValue,...)

Arguments
modelObj Model object to which to add the rule.

RuleValue Enter a character string within quotes. For
example, enter the algebraic rule 'Va*Ea +
Vi*Ei - K2'.

RuleTypeValue Enter 'algebraic', 'assignment', or
‘rate’'. An algebraic or rate rule is evaluated
at each time step during the simulation. An
assignment rule is evaluated once before
the simulation starts.Note: if a species or
parameter is marked constant, you can still
assign an initial value using an assignment
rule. The amount or value gets assigned
according to the rule and then remains
constant during the simulation.

Description A rule is a mathematical expression that changes the amount of a

species or the value of a parameter. It also defines how species and
parameters interact with one another.

ruleobj = addrule(modelObj, 'Rulevalue') creates a rule object and
returns a pointer (ruleObj) to the object. In the rule object, this method
assigns a value ('RuleValue') to the property Rule, assigns the value
'algebraic' to the property RuleType, and assigns the model object
(modelObj) to the property Parent. In the model object (nodelObj), this
method assigns the rule object to the property Rules.

4-32

addrule (model)

ruleobj = addrule(modelObj, 'RuleValue', 'RuleTypeValue') in addition
to the assignments above, assigns a value (RuleTypeValue) to the
property RuleType. For more information on the different types of
rules see RuleType.

ruleObj = addrule(..., ’PropertyName', PropertyValue,...) defines
optional properties. The property name/property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

View additional rule properties with the function get, and modify rule
properties with the function set. Copy a rule object to a model with
the function copyobj, or delete a rule object from a model with the
function delete.

Method Methods for rule objects
Summary
copyobj (any object) Copy SimBiology object and its
children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology
object
Property Properties for rule objects
Summary
Active Property to indicate object use
during a simulation
Annotation Property with information about
a SimBiology object
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
Parent Property indicating the parent

object

4-33

addrule (model)

Rule Property to define certain species
and parameter interactions

RuleType Property for defining the type of
rule for the rule object.

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Examples Add a rule with default RuleType.

1 Create a model object, and then add a rule object.

modelObj = sbiomodel('cell');
ruleObj = addrule(modelObj, '0.1*B-A")

2 Get a list of properties for a rule object.

get(modelObj.Rules(1)) or get(ruleObj)

MATLAB displays a list of rule properties.

Active: 1

Annotation:
Name:
Notes:
Parent:
Rule:
RuleType:
Tag:

Type:
UserData:

4-34

[1x1 SimBiology.Model]
'0.1*B-A'

'algebraic'

‘rule’

[]

addrule (model)

See Also

Add rule with RuleType property set to rate.

1 Create model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule which defines that the quantity of a species c. In the rule

expression k is the rate constant for a -> b.

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from default ('algebraic') to 'rate'. and

verify using the get command.

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object.

Active: 1
Annotation: "'
Name: ''
Notes: ''
Parent: [1x1 SimBiology.Model]
Rule: 'c = k*(atbh)'
RuleType: 'rate’
Tag: ''
Type: 'rule’
UserData: []

copyobj, delete, sbiomodel

4-35

addspecies (model)

4-36

Purpose

Syntax

Arguments

Description

Add species object to model object

speciesObj = addspecies(modelObj, NameValue)
speciesObj = addspecies(modelObj, NameValue,

InitialAmountValue)
speciesObj = addspecies(...’PropertyName’, PropertyValue...)
modelObj Model object.
NameValue Name for a species object. Enter a character
string unique to the level of object creation.
Species objects are identified by Name within
ReactionRate and Rule property strings. You
can use the function sbioselect to find an
object with a specific Name property value.
IntialAmountValue Initial amount value for the species object.
Enter double. Positive real number, default
= 0.

speciesObj = addspecies(modelObj, NameValue) creates a species object
and returns a pointer (speciesObj) to the object. In the species object,
this method assigns a value (NameValue) to the property Name, assigns
the model object (model0bj) to the property Parent. In the model object,
this method assigns the species object to the property Species.

speciesObj = addspecies(modelObj, NameValue,
InitialAmountValue), in addition to the above, this method
assigns an initial amount (InitialAmountValue) for the species.

You can also add a species to a reaction using the methods addreactant
and addproduct . When a reaction is defined with a species not in the
model object (model0bj), SimBiology creates a species object.

A species object must have a unique name at the level at which it is
created. For example, a model object cannot contain two species objects
named H20. However, a submodel of the model that contains the species
H20 can also contain a species named H20.

addspecies (model)

View properties for a species object with the get command, and
modify properties for a species object with the set command. You
can view a summary table of species objects in a model (Mobj) with
get(Mobj, 'Species') or the properties of the first species with
get(Mobj.Species(1)).

A species in a rule has to be in the model object with the rule. This is
different from parameters in a rule, where a parameter can be in the
model object or in the kinetic law object or resolve hierarchically.

speciesObj = addspecies(...’PropertyName’, PropertyValue...)defines
optional properties. The property name/property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs). The property
summary on this page shows the list of properties.

Valid Species Names

SimBiology species names can have any number or character, for
example, N-acetyl-D-glucosamine.

Species names, however, cannot be left empty and note the following
reserved words, characters and constraints:

® The literal words null and time. Note that you could specify species
names with these words contained within the name. For example
nullaminoacids, or nullnucleotides.

® The characters i, j, -> <>,[, and].

® Ifyou are using a species name that is not a valid MATLAB variable
name, do the following:

= Enclose the name in square brackets when writing a reaction rate
equation or a rule.

= Enter the name without brackets when you are creating the
species or when you are adding the reaction.

For example, enclose [DNA polymerase+] within brackets in
reaction rates and rules; enter DNA polymerase+ when specifying
the name of the species or while writing the reaction.

4-37

addspecies (model)

4-38

Method Methods for species objects
Summary
copyobj (any object) Copy SimBiology object and its
children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology
object
Property Properties for species objects
Summary
Annotation Property with information about
a SimBiology object
BoundaryCondition Property to set a species object to
have a boundary condition
ConstantAmount Property to specify variable or
constant species amount
InitialAmount Property containing initial
amount of a species
InitialAmountUnits Property containing units for
species initial amount
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
Parent Property indicating the parent
object
Tag Property to specify a label for a
SimBiology object
Type Property to indicate SimBiology
object type
UserData Property to specify data to

associate with object

addspecies (model)

Examples Add two species to a model, one is a reactant and the other is the
enzyme catalyzing the reaction.

1 Create a model object with the name my_model.

modelObj = sbiomodel ('my_model');

2 Add two species objects with the names glucose 6 phosphate and

glucose_6_phosphate_dehydrogenase

speciesObj1
speciesObj2 = addspecies (modelObj,

addspecies (modelObj, 'glucose 6 phosphate');

'glucose_6_phosphate_dehydrogenase');

3 Set initial amount of glucose 6 phosphate to 100 and verify.

set (speciesObj, 'InitialAmount',100);
get (speciesObj, 'InitialAmount')

MATLAB returns

ans =
100

4 Use get to note that modelObj contains the species object array.

get(modelObj, 'Species')

MATLAB returns,

Species Object Array

Index: Name: Initial
Amount:
1 glucose_6_phosphate 100

Initial
AmountUnits:

4-39

addspecies (model)

4-40

See Also

2 glucose_6_phosphate_dehydrogenase

5 Retrieve information about the first species in the array.
get(Mobj.Species(1))

Annotation: "'
ConstantAmount: 'false'
InitialAmount: 100
InitialAmountUnits: "'
Name: 'glucose_6_ phosphate’
Notes: "'
Parent: [1x1 SimBiology.Model]
Tag: '
Type: 'species'
UserData: []

addproduct, addreactant, addreaction
MATLAB functions— get and set

copyobj (any object)

Purpose Copy SimBiology object and its children

Syntax copiedobj = copyobij(Obj, parentObj)
copiedObj = copyobj (modelObj)

Arguments
Obj Abstract kinetic law, configuration set, kinetic law,
model, parameter, reaction, rule, or species object.

parentObj If copiedobj is configuration set, reaction, rule or
species object, parentObj must be a model object. If
copiedObj is a parameter object, ParentObj must
be a model or kinetic law object. If copiedObj is a
model object, ParentObj must be a model object (for
example, in the case of submodels) or sbioroot.

modelObj Model object to be copied.

Description copiedObj = copyobj(0bj, parentObj) makes a copy of a SimBiology
object (Obj) and returns a pointer to the copy (copiedObj). In the copied
object (copiedObj), this method assigns a value (parent0Obj) to the
property Parent.

® 0bj— Can be abstract kinetic law, configuration set, kinetic law,
model, parameter, reaction, rule, or species object.

® parentObj — If copiedObj is configuration set, reaction, rule or
species object, parentObj must be a model object. If copiedObj is a
parameter object, ParentObj must be a model or kinetic law object. If
copiedObj is a model object, ParentObj must be a model object (for
example, in the case of submodels) or sbioroot.

copiedObj = copyobj (modelobj) makes a copy of a model object

(modelObj) and returns the copy (copiedObj). In the copied model object
(copiedObj), this method assigns the root object to the property Parent.

4-41

copyobj (any object)

Example

See Also

4-42

Create a reaction object separate from a model object and then add it
to a model.

1 Create a model object and create a separate reaction object.

modelObj = sbiomodel('cell');
reactionObj = sbioreaction('a -> b');

2 Create a copy of the reaction object and assign it to the model
object.

reactionObjCopy = copyobj(reactionObj, modelObj);
modelObj.Reactions

Reaction Object Array
Index: Reaction:
1 a->»b

sbiomodel, sbioreaction, sbioroot

delete (any object)
|

Purpose Delete SimBiology object
Syntax delete (0bj)
Arguments
Obj SimBiology object: abstract kinetic law,

configuration set, kinetic law, model, parameter,
reaction, rule, or species.

Description delete(obj) removes an object (Obj) from its parent.

e Ifobj is a species object that is being used by a reaction object, this
method returns an error and the species object is not deleted. You
need to delete the reaction or remove the species from the reaction
before you can delete the species object.

e Ifobj is a parameter object being used by a kinetic law object, there
is no warning when the object is deleted. However, when you try to
simulate your model, a error occurs because the parameter cannot
be found.

e Ifobj is a reaction object, this method deletes the object, but the
species objects that were being used by the reaction object are not
deleted.

e Ifobj is an abstract kinetic law object and there is a kinetic law
object referencing it, this method returns an error.

e Ifobj is a SimBiology configuration set object, and it is the active
configuration set object, this method, after deleting the object, makes
the default configuration set object active. Note, you cannot delete
the default configuration set.

® You cannot delete the SimBiology root.

You can also delete all model objects from the root with one call to the
sbioreset function.

4-43

delete (any object)

4-44

Examples

See Also

Example 1
Delete a reaction from a model. Notice, the species objects are not
deleted with the reaction object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'a -> b');
delete(reactionObj)

Example 2
Delete a single model from the root object.
modelObj1 = sbiomodel('cell');

modelObj2 sbiomodel('virus');
delete(ModelObj2)

sbiomodel, sbioroot, sbioreset

display (any object)

Purpose Display summary of SimBiology object
Syntax display(0bj)
Arguments
Obj SimBiology object: abstract kinetic law,

configuration set, kinetic law, model, parameter,
reaction, rule, or species.

Description Display the SimBiology object array. display(0bj) is called for the
SimBiology object, 0bj when the semicolon is not used to terminate
a statement. The display of 0bj gives a brief summary of Obj
configuration. You can view a complete list of Obj properties with the
command get . You can modify all 0bj properties that can be changed,
with the command set.

Examples modelObj = sbiomodel('cell')
reactionObj = addreaction(modelObj, 'A + B -> C')

4-45

getadjacencymatrix (model)

4-46

Purpose

Syntax

Arguments

Description

Return adjacency matrix from model object

M = getadjacenceymatrix(modelObj)
M = getadjacencymatrix(modelObj,
'flat')

[M, Headings]

= getadjacenceymatrix(modelObj)
[M, Headings, Mask]

= getadjacenceymatrix(0bj)

M Adjacency matrix for modelObj

modelObj specify model object model0bj

‘flat' Return adjacency matrix for only specified
modelObj not for objects contained in the
modelObj

Headings Return row and column headings to Headings

Mask Returns 1 for species object 0 for reaction object
to Mask

getadjacencymatrix returns adjacency matrix for model object.

M = getadjacenceymatrix(modelObj) returns adjacency matrix for model
object, (model0BJ) to M.

An adjacency matrix is defined by listing all species contained by
modelObj and all reactions contained by modelObj column-wise and
row-wise in a matrix. The reactants of the reactions are represented
in the matrix with a 1 at the location of [row of species, column of
reaction]. The products of the reactions are represented in the matrix
with a 1 at the location of [row of reaction, column of species]. All other
locations in the matrix are 0.

M = getadjacencymatrix(modelObj, 'flat') returns the adjacency
matrix to ¥ and defines the adjacency matrix for only modelobj. If

getadjacencymatrix (model)

modelObj is a SimBiology model then ¥ is the adjacency matrix for the
reactions and species contained by model0bj. M does not include any
submodel reaction or species information.

[M, Headings] = getadjacenceymatrix(modelObj) returns the adjacency
matrix to M and the row and column headings to Headings. Headings
is defined by listing all Name property values of species contained

by model0bj and all Name property values of reactions contained by
modelObj. In the above example, Headings would be {'A', 'B', 'C',
'R1'}.

[M, Headings, Mask] = getadjacenceymatrix(0Obj) returns an array of
ones and zeros to Mask where a 1 represents a species object and a 0
represents a reaction object. In the above example, Mask would be [1
11 0].
Examples 1 Read in a model using sbmlimport.
modelObj = sbmlimport('lotka.xml');

2 Get the adjacency matrix for the modelObj.

[M, Headings] = getadjacencymatrix(modelObj)

See Also getstoichmatrix

4-47

getconfigset (model)

4-48

Purpose

Syntax

Arguments

Description

Example

Get configuration set object from model object

configsetObj = getconfigset (modelObj,
'NameValue')

configsetObj = getconfigset (modelObj)
configsetObj = getconfigset (modelObj,

‘active')

modelObj Model object. Enter a variable name for a model
object.

NameValue Name of the configset object.

configsetObj Object holding the simulation specific information.

configsetObj = getconfigset (modelObj, 'NameValue') returns the
configuration set attached to modelObj that is named NameValue, to
configsetObj.

configsetObj = getconfigset(modelObj) returns a vector of all attached
configuration sets, to configsetObj.

configsetObj = getconfigset (modelObj, 'active') retrieves the active
configuration set.

A configuration set object stores simulation specific information. A
SimBiology model can contain multiple configsets with one being
active at any given time. The active configuration set contains the
settings that are used during the simulation.

Use the setactiveconfigset function to define the active configset.
modelObj always contains at least one configset object with name
configured to ’default’. Additional configset objects can be added to
modelObj with the method, addconfigset .

1 Retrieve the defaultconfigset object from the modelObj.

modelObj = sbiomodel('cell');

getconfigset (model)

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)

SolverType: ode15s

StopTime: 10.000000
SolverOptions:

AbsoluteTolerance: 1.000000e-006

RelativeTolerance: 1.000000e-003
RuntimeOptions:

StatesTolLog: all
CompileOptions:

UnitConversion: true

DimensionalAnalysis: true
2 Configure the SolverType to ssa.

set(configsetObj, 'SolverType', 'ssa')
get(configsetObj)

Active: 1
CompileOptions: [1x1 SimBiology.CompileOptions]
Name: 'default'’
Notes: ''
RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.SSASolverOptions]
SolverType: 'ssa'
StopTime: 10
StopTimeType: 'simulationTime'
TimeUnits: 'second’
Type: 'configset'

See Also addconfigset, removeconfigset, setactiveconfigset

4-49

getparameters (kineticlaw)

Purpose

Syntax

Arguments

Description

Example

4-50

Get specific parameters in kinetic law object

parameterObj = getparameters(kineticlawObj)
parameterObj = getparameters(kineticlawObj,
'ParameterVariablesValue")

kineticlawObj Retrieve parameters used by kinetic law
object.

ParameterVariablesValue Retrieve parameters used by kinetic
law object corresponding to the specified
parameter in ParameterVariables
property of the kinetic law object.

parameterObj = getparameters(kineticlawObj) returns the parameters
used by the kinetic law object kineticlawObj to parameteroObj.

parameterObj = getparameters(kineticlawObj,
'ParameterVariablesValue") returns the parameter in the
ParameterVariableNames property that corresponds to the parameter
specified in the ParameterVariables property of kineticlawObj,

to parameterObj. ParameterVariablesValue is the name of the
parameter as it appears in the ParameterVariablesproperty of
kineticlawObj. ParameterVariablesValue can be a cell array of
strings.

If you change the name of a parameter you must configure all
applicable elements such as rules that use the parameter, any

user specified ReactionRate, or the kinetic law object property
ParameterVariableNames. Use the method setparameter to configure
ParameterVariableNames.

Create a model, add a reaction and assign the ParameterVariableNames
for the reaction rate equation.

1 Create model object, and then add a reaction object.

getparameters (kineticlaw)

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Add two parameter objects.

parameterObj1 addparameter(kineticlawObj, 'Va');
parameterObj2 = addparameter(kineticlawObj, 'Ka');

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should to be set. To set these variables,

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj, 'Km', 'Ka');

5 To retrieve a parameter variable,

parameterObj3 = getparameters(kineticlawObj, 'Vm')

MATLAB returns

Parameter Object Array

Index: Name: Value: ValueUnits:
1 Va 1

parameterObj4 = getparameters (kineticlawObj, 'Km')

See Also addparameter, getspecies, setparameter.

4-51

getspecies (kineticlaw)

Purpose

Syntax

Arguments

Description

Example

4-52

Get specific species in kinetic law object

speciesObj = getspecies(kineticlawObj)
speciesObj = getspecies(kineticlawObj,
'SpeciesVariablesValue')

kineticlawObj Retrieve species used by kinetic
law object.
SpeciesVariablesValue Retrieve species used by kinetic

law object corresponding to

the specified species in the
SpeciesVariables property of the
kinetic law object.

speciesObj = getspecies(kineticlawobj) returns the species used by the
kinetic law object kineticlawObj to speciesObj.

speciesObj = getspecies(kineticlawObj, 'SpeciesVariablesValue')
returns the species in the SpeciesVariableNames property to
speciesObj.

SpeciesVariablesValue is the name of the species as it
appears in the SpeciesVariables property of kineticlawObj.
SpeciesVariablesValue can be a cell array of strings.

Species names are referenced by reaction objects, kinetic law objects,
and model objects. If you change the name of a species SimBiology
updates the reaction to use the new name. You must however configure
all other applicable elements such as rules that use the species, and the
kinetic law object SpeciesVariableNames. Use the method setspecies
to configure SpeciesVariableNames.

Create a model, then add a reaction, and assign the
SpeciesVariableNames for the reaction rate equation.

1 Create model object, then add a reaction object.

getspecies (kineticlaw)

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten' .

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');
reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that should to be set. To set this variable,

setspecies(kineticlawObj,'S', 'a');
4 Retrieve the species variable using getspecies.
speciesObj = getspecies (kineticlawObj, 'S"')

MATLAB returns

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 a 0
See Also addspecies, setspecies, getparameters, setparameter

4-53

getstoichmatrix (model)

Pu rpose Return stoichiometry matrix from model object
Syntax M = getstoichmatrix(modelObj)

M = getstoichmatrix(modelObj,

'flat')

[M,objSpecies]=
getstoichmatrix (modelObj)
[M,objSpecies,objReactions]=
getstoichmatrix (modelObj)

Arguments
M Adjacency matrix for model0bj.
modelObj Specify model object model0bj.
"flat' Return stoichiometry matrix for only
specified modelObj not for objects
contained in the 0bj.
objSpecies Return list of 0bj species by Name
property of species.
objReactions Return list of 0bj reactions by Name
property of reactions.
Description getstoichmatrix returns a stoichiometry matrix for a model object.

M = getstoichmatrix(modelObj)returns a stoichiometry matrix for
SimBiology a model object, (model0bj) to m.

A stoichiometry matrix is defined by listing all reactions contained by
modelObj column-wise and all species contained by modelObj row-wise
in a matrix. The species of the reaction are represented in the matrix
with the stoichiometric value at the location of [row of species, column
of reaction]. Reactants have negative values. Products have positive
values. All other locations in the matrix are 0.

For example, if model0bj is a model object with two reactions with
names R1 and R2 and Reaction valuesof: 2 A + B -> 3 CandB + 3 D
-> 4 A, the stoichiometry matrix would be defined as:

4-54

getstoichmatrix (model)

A B C D
R1 -2 -1 3 0
R2 4 -1 0 -3

M = getstoichmatrix(modelobj, 'flat') defines the stoichiometry
matrix for only model0bj. If Obj is a SimBiology model then # is
the stoichiometry matrix for the reactions and species contained
by model0bj. M does not include any submodel reaction or species
information.

[M,objSpecies]= getstoichmatrix(modelObj) returns the stoichiometry
matrix to ¥ and the species to objSpecies. objSpecies is defined by
listing all Name property values of species contained by 0bj. In the above
example, objSpecies would be {'A', 'B', 'C', 'D'};

[M,objSpecies,objReactions]= getstoichmatrix(modelObj) returns
the stoichiometry matrix to # and the reactions to objReactions.
objReactions is defined by listing all Name property values of reactions
contained by 0Obj. In the above example, ObjReactions would be {'R1",
'R2'}.

Example 1 Read in a model using sbmlimport.

modelObj = sbmlimport('lotka.xml');

2 Get the stoichiometry matrix for the modelObj.

[M,objSpecies,objReactions] = getstoichmatrix(modelObj)

See Also getadjacencymatrix

4-55

rmproduct (reaction)

Purpose Remove species object from reaction object products

Syntax rmproduct (reactionObj, SpeciesName)
rmproduct (reactionObj, speciesObj)

Arguments
reactionObj Reaction object.

SpeciesName Name for a model object. Enter a species name
or cell array of species names.

speciesObj Species object. Enter a species object or an
array of species objects.

Description rmproduct (reactionObj, SpeciesName),in areaction object (reactionObj),
removes a species object with a specified name (SpeciesName) from
the property Products, removes the species name from the property
Reaction, and updates the property Stoichiometry to exclude the
species coefficient.

rmproduct (reactionObj, speciesObj) removes a species object as
described above using a MATLAB variable for a species object.

The species object is not removed from the parent model property
Species. If the species object is no longer used by any reaction, you can
use the function delete to remove it from the parent object.

If one of the species specified does not exist as a product, a warning
will be returned.

Examples Example 1

Shows you how to remove a product that was added to a reaction by
mistake. You can remove the species object using the species name.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP -> creatine + ATP + Pi');

rmproduct(reactionObj, 'Pi')

4-56

rmproduct (reaction)

Reaction Object Array

Index: Reaction:
1 Phosphocreatine + ADP -> creatine + ATP
Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');
reactionObj.Reaction

ans =
A ->B+C

rmproduct (reactionObj, modelObj.Species(2));
reactionObj.Reaction

ans =
A ->C
See Also rmreactant

4-57

rmreactant (reaction)

Pu rpose Remove species object from reaction object reactants

Syntax rmreactant(reactionObj, SpeciesName)
rmreactant(reactionObj, speciesObj)

Arguments
reactionObj Reaction object.

SpeciesName Name for a species object. Enter a species name
or cell array of species names.

speciesObj Species object. Enter a species object or an
array of species objects.

Description rmreactant (reactionObj, SpeciesName), in a reaction object
(reactionObj), removes a species object with a specified name
(SpeciesName) from the property Reactants, removes the species name
from the property Reaction, and updates the property Stoichiometry
to exclude the species coefficient.

rmreactant (reactionObj, speciesObj)removes a species object as
described above using a MATLAB variable for a species object, or a
model index for a species object.

The species object is not removed from the parent model property
Species. If the species object is no longer used by any reaction, you can
use the method, delete to remove it from the parent object.

If one of the species specified does not exist as a reactant, a warning
is returned.
Examples Example 1

Shows you how to remove a reactant that was added to a reaction by
mistake. You can remove the species object using the species name.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'Phosphocreatine + ADP + Pi -> creatine + ATP');
rmreactant(reactionObj, 'Pi')

4-58

rmreactant (reaction)

Reaction Object Array

Index: Reaction:
1 Phosphocreatine + ADP -> creatine + ATP
Example 2

Remove a species object using a model index to a species object.

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A -> B + C');

reactionObj.Reaction

ans =
A+B ->C

rmreactant(r, m.Species(2));
reactionObj.Reaction

ans =
A->C

See Also rmproduct, delete

4-59

removeconfigset (model)

4-60

Purpose

Syntax

Arguments

Description

Example

Remove configuration set from model

removeconfigset (modelObj ,
'NameValue')
removeconfigset (modelObj, configsetObj)

modelObj Model object from which to remove
configuration set.

NameValue Name of the configuration set.

configsetObj Configuration set object that is to be

removed from model object

removeconfigset (modelObj, 'NameValue') removes the configset object
with name, NameValue from SimBiology model object modelobj. A
configuration set object stores simulation specific information. A
SimBiology model can contain multiple configuration sets with one
being active at any given time. The active configuration set contains the
settings that are used during the simulation. model0bj always contains
at least one configuration set object with name configured to 'default"'.
The default configuration set cannot be removed from mode10bj. If the
active configuration set is removed from modelObj then the default
configuration set will be made active.

removeconfigset (modelObj, configsetObj) removes the configuration set
object, configsetObj from SimBiology model, mode10bj. The configuration
set is not deleted; if you want to delete configsetObj use the delete
method.

If however, there is no MATLAB variable holding the configset,
removeconfigset (modelObj, 'NameValue'), removes the configset from
the model and deletes it.

1 Create a model object by importing the file oscillator.xml and
add a configset.

removeconfigset (model)

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Remove the configset from modelObj by name or alternatively by
indexing.

% Remove the configset with name 'myset'.
removeconfigset (modelObj, 'myset');

% Get all configset objects and remove the second.
configsetObj = getconfigset(modelObj);
removeconfigset (modelObj, configsetObj(2));

See Also addconfigset, getconfigset, setactiveconfigset

4-61

reset (root)

4-62

Purpose
Syntax

Description

Examples

Delete all model objects from the root object
reset(sbioroot)

reset(sbioroot) deletes all SimBiology model objects contained by
the SimBiology root. The SimBiology root object is returned with the
method, sbioroot . This call is equivalent to sbioreset.

The SimBiology root object contains a list of the top-level SimBiology
model objects, available units, unit prefixes, and abstract kinetic law
objects. A top-level SimBiology model object has its Parent property set
to the SimBiology root object. A SimBiology model object that has its
Parent property set to another SimBiology model is a submodel and is
not stored by the SimBiology root.

To add an abstract kinetic law to the SimBiology root user-defined
library, use the addtolibrary function. To add a unit to the SimBiology
root user-defined library, use the function,sbioregisterunit. To add a
unit prefix to the SimBiology root user-defined library, use the function,
sbioregisterunitprefix.

1 Query sbioroot that has two model objects.

sbioroot

SimBiology Root Contains:

Models: 2
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 1
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

2 Call reset.

sbioroot

reset (root)

SimBiology Root Contains:

Models: 0
Builtin Abstract Kinetic Laws: 3
User Abstract Kinetic Laws: 1
Builtin Units: 54
User Units: 0
Builtin Unit Prefixes: 13
User Unit Prefixes: 0

See Also sbioregisterunit, sbioregisterunitprefix, sbioroot, sbioreset,
sbiohelp

4-63

sbioabstractkineticlaw (abstractkineticlaw)

4-64

Purpose

Syntax

Arguments

Description

Construct abstract kinetic law object

abstkineticlawObj = sbioabstractkineticlaw('Name')
abstkineticlawObj = sbioabstractkineticlaw('Name', ’Expression’)
abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...)

Name Enter a name for the abstract kinetic law.
Name must be unique in the user-defined
kinetic law library. Name is referenced by
kineticlawObj .

Expression The mathematical expression that defines the
kinetic law.

A SimBiology abstract kinetic law defines a reaction rate expression,
species variables and parameter variables for a kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('Name') creates an
abstract kinetic law object, with name Name and returns it to
abstkineticlawObj.

The abstract kinetic law provides a mechanism for applying a specific
rate law to multiple reactions. It acts as a mapping template for

the reaction rate. The abstract kinetic law defines a reaction rate
expression, which is shown in the property Expression, and the species
and parameter variables used in the expression. The species variables
are defined in the SpeciesVariables property, and the parameter
variables are defined in the ParametervVariables property of the
abstract kinetic law object.

In order to use abstkineticlawObj when constructing a kinetic law
object with the method addkineticlaw, abstkineticlawObj must be
added to the user-defined library with the sbioaddtolibrary function.
To get the abstract kinetic law objects in the user-defined library, use
the command get(sbioroot, 'UserDefinedKineticLaws')

sbioabstractkineticlaw (abstractkineticlaw)

abstkineticlawObj = sbioabstractkineticlaw('Name', ’Expression’),
constructs a SimBiology abstract kinetic law object, abstkineticlawObj
with name, Name and with expression, ’Expression’ and returns it to
abstkineticlawObj.

abstkineticlawObj = sbioabstractkineticlaw(...'PropertyName',
PropertyValue...) defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

Additional abstkineticlawObj properties can be viewed with the get
command. abstkineticlawObj properties can be modified with the set

command.
Method
Summary copyobj (any object) Copy SimBiology object and its
children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology
object
Property
Summa ry Annotation Property with information about
a SimBiology object
Expression Property containing the
expression used to determine the
reaction rate equation
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
ParameterVariables Property showing parameters in

abstract kinetic law

4-65

sbioabstractkineticlaw (abstractkineticlaw)

Parent Property indicating the parent
object
SpeciesVariables Property showing species in

abstract kinetic law

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Example 1 Create an abstract kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('mylawl', '(k1*s)/(k2+k1+s)');
2 Assign the parameter and species variables in the expression

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

3 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

SimBiology adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined
Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/(k2+k1+s)

4 Use the new abstract kinetic law when defining a reaction’s kinetic
law.

4-66

sbioabstractkineticlaw (abstractkineticlaw)

modelObj = sbiomodel('cell');
reactionObj = addreaction(modelObj, 'A + B <->B + C');
kineticlawObj = addkineticlaw(reactionObj, 'mylawi');

Remember to specify the SpeciesVariableNames and the
ParameterVariableNames in the kineticlawObj to fully define the
ReactionRate of the reaction.

See Also sbiomodel, addreaction, addkineticlaw, addparameter

4-67

sbiomodel (model)

4-68

Purpose

Syntax

Arguments

Description

Construct model object

modelObj = addmodel (’NameValue')
modelObj = sbiomodel(...’PropertyName', PropertyValue...)
NameValue Required property to specify a unique name for
a model object. Enter a character string.
PropertyName Property name for a Model object from the
Property Summary table below.
PropertyValue Property value. Valid value for the specified

property.

modelObj = addmodel(’NameValue') creates a model object and returns
a pointer (model0bj)to the object. In the model object, this method
assigns a value (NameValue) to the property Name.

modelObj = sbiomodel(...’PropertyName', PropertyValue...)defines
optional properties. The property name, property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

Simulate model0bjwith the function sbiosimulate. Add the model

as a submodel to another model object using the model object

method addmodel or add as a submodel to a model object with the
function copyobj. Add objects to a model object using the methods
addkineticlaw, addmodel, addparameter, addreaction, addrule, and
addspecies.

All top-level SimBiology model objects can be retrieved from the
SimBiology root object. A top-level SimBiology model object has its
Parent property set to the SimBiology root object. Submodels have the
Parent property set to another SimBiology model and are not stored by
the SimBiology root.

sbiomodel (model)

Method
Summary

addconfigset (model)

addmodel (model)

addparameter (model,
kineticlaw)

addreaction (model)

addrule (model)
addspecies (model)

copyobj (any object)

delete (any object)
display (any object)

getadjacencymatrix (model)

getconfigset (model)

getstoichmatrix (model)

removeconfigset (model)

setactiveconfigset (model)

Add configuration set object to
model object

Add submodel object to model
object

Add parameter object to model or
kinetic law object

Add reaction object to model
object

Add rule object to model object
Add species object to model object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Return adjacency matrix from
model object

Get configuration set object from
model object

Return stoichiometry matrix from
model object

Remove configuration set from
model

Set the active configuration set
for model object

4-69

sbiomodel (model)

Property
Summa ry Annotation Property with information about
a SimBiology object
Models Property showing all model
objects
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
Parameters Property with array of parameter
objects
Parent Property indicating the parent
object
Reactions Property with an array of reaction
objects.
Rules Property showing rules in model
object
Species Property showing species in
model object
Tag Property to specify a label for a
SimBiology object
Type Property to indicate SimBiology
object type
UserData Property to specify data to
associate with object
Examples 1 Create a SimBiology model object.

ModelObj = sbiomodel('cell', 'Tag', 'mymodel');

2 View help for the modelObj Tag property.

sbiohelp('Tag')

4-70

sbiomodel (model)

3 List all modelObj properties and the current values.

get(ModelObj)

MATLAB returns

Annotation:
Models:
Name:
Notes:
Parameters:
Parent:
Species:
Reactions:
Rules:

Tag:

Type:
UserData:

4 Display summary of modelObj contents.

[0x1 double]
'cell’

[Ox1
[1x1
[O0x1

double]

double]
[0x1 double]
[0x1 double]
‘mymodel’
"sbiomodel’
[]

SimBiology Model - cell

Model Components:

Models:

Parameters:

Reactions:
Rules:
Species:

See Also

O OO oo

SimBiology.Root]

addconfigset, addkineticlaw, addmodel, addparameter,

addreaction, addrule, addspecies, shioroot, copyobj, sbiosimulate
MATLAB functions set, get

4-71

sbioparameter (parameter)

Purpose Construct parameter object
Syntax parameterObj = sbioparameter(0Obj, NameValue)
parameterObj = sbioparameter(Obj, NameValue, ValueValue)
parameterObj = sbioparameter(...’PropertyName', PropertyValue...)
Arguments
Obj Model object or kinetic law object.
NameValue Property for a parameter object. Enter a unique

character string.Since objects can use this
property to reference a parameter, a parameter
object must have a unique name at the level it
is created. For example, a kinetic law object
cannot contain two parameter objects named
kappa. However, the model object that contains
the kinetic law object can contain a parameter
object named kappa along with the kinetic law
object.

You can use the function sbioselect to find an
object with a specific Name property value.

ValueValue Value of a parameter object. Enter a number.

Description parameterObj = sbioparameter(Obj, NameValue) constructs a SimBiology
parameter object, enters a value (NameValue) for the required property
Name, and returns the object (parameterObj).

To use a parameter object (paramaterObj) in a simulation, you need
to add the object to a SimBiology model, or kinetic law object with
the method copyobj. You can use the addparameter method to
simultaneously create and assign a parameter to a model or kinetic
law object. SimBiology objects are constructed with the functions
sbiomodel, addmodel, addkineticlaw, and addreaction

parameterObj = sbioparameter(Obj, NameValue, ValueValue)creates a
parameter object, assigns a value (NameValue) to the property Name,

4-72

sbioparameter (parameter)

Method
Summary

Property
Summary

assigns the value (ValueValue) to the property Value and returns the
parameter object to a variable (parameterObj).

parameterObj = sbioparameter(...’PropertyName',
PropertyValue...)defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

Copy a SimBiology parameter object to a SimBiology model or kinetic
law object with the method, copyobj. Remove a parameter object from
a model or kinetic law object with the method, delete.

View additional parameter object properties with the get command.
Modify additional parameter object properties with the set command.
You can find help for parameterObj properties with the help
PropertyName command and help for functions with the sbiohelp
FunctionName command.

copyobj (any object) Copy SimBiology object and its
children

delete (any object) Delete SimBiology object

display (any object) Display summary of SimBiology
object

Annotation Property with information about
a SimBiology object

ConstantValue Property to indicate variable or
constant parameter value

Name Property with name of object

Notes Property with HTML text

describing SimBiology object

4-73

sbioparameter (parameter)

4-74

Examples

Parent Property indicating the parent
object

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Value Property to assign value to
parameter object

ValueUnits Property with parameter value
units

1 Construct a parameter object.

parameter)bj = sbioparameter('kappa', 1);
% View the help for the parameter object's Value property.
help(parameterObj, 'Value')

2 View parameter object properties.

get(parameterObj)

MATLAB returns

Annotation: "'
ConstantValue: 1
Name: 'kappa'’
Notes: "'
Parent: [1x1 SimBiology.Reaction]
Tag: '
Type: 'parameter'
UserData: []
Value: 4
ValueUnits: '

sbioparameter (parameter)

See Also addparameter, copyobj, sbhiomodel.

4-75

sbioreaction (reaction)

Purpose

Syntax

Arguments

4-76

Construct reaction object

reactionObj = sbioreaction('ReactionValue')
reactionObj = sbioreaction('ReactantsValue',

'"ProductsValue')

reactionObj = sbioreaction(’ReactantsValue’, RStoichCofficients,
’ProductsValue', PStoichCofficients)
reactionObj = sbioreaction(...’PropertyName', PropertyValue...)

ReactionValue

ReactantsValue

ProductsValue

RStoichCofficients

PStoichCofficients

Property to specify the reaction equation.
Enter a character string. A hyphen followed
by a right angle bracket (->) indicate
reactants going froward to products. A
hyphen with left and right angle brackets
(<->), indicate a reversible reaction.
Coefficients before reactant or product
names must be followed by a space.
Examples 'A -> B','A + B ->C','2 A +
B ->2C','A<->B".

A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

A string defining the species name, a cell
array of strings, a species object or an array
of species objects.

Stoichiometric coefficients for reactants,
length of array equal to length of
ReactantsValue.

Stoichiometric coefficients for products,
length of array equal to length of
ProductsValue.

sbioreaction (reaction)

Description reactionObj = sbioreaction('ReactionValue') creates a SimBiology
reaction object, assigns a value (ReactionValue) to the property
Reaction, and returns the reaction object (reactionObj).

To use reactionObj in a simulation, you must add reactionObj to a
SimBiology model object using copyobj. You can use addreaction to
simultaneously create a reaction object and add it to a model object. A
SimBiology model object is constructed with the function sbiomodel.

reactionObj = sbioreaction('ReactantsValue', 'ProductsValue')
constructs a SimBiology reaction object that contains reactant species
(Reactants) and product species (Products). The stoichiometric values
are assumed to be 1. Reactants and Products can be a string defining
the species name, a cell array of strings, a species object, or an array of
species objects.

reactionObj = sbioreaction(’ReactantsValue’, RStoichCofficients,
‘ProductsValue', PStoichCofficients) adds stoichiometric coefficients
(RStoichCofficients) for reactant species, and stoichiometric
coefficients (PStoichCofficients) for product species, to the property
Stoichiometry. The length of Reactants and RCofficients must be
equal, and the length of Products and PCofficients must be equal.

reactionObj = sbioreaction(...’PropertyName',
PropertyValue...)defines optional properties. The property
name/property value pairs can be in any format supported by the
function set (for example, name-value string pairs, structures, and
name-value cell array pairs).

View additional reactionObj properties with the get command. Modify
additional reactionObj properties with the set command. You can find
help for reactionObj properties with the help PropertyName command
and help for functions with the sbiohelp FunctionName command.

A reaction object that does not have a parent can contain only species
objects that do not have a parent. If a parented species object is added
to an unparented reaction object, a copy of the species object will be
made and added to the reaction as an unparented species.

4-77

sbioreaction (reaction)

4-78

Method
Summary

Property
Summary

When an unparented reaction object is added to a model, SimBiology
checks the model for the required species. If the model contains the
species, the reaction object now uses the model’s species object. If the
model does not contain the species, the species object is added to the
model and the reaction object uses it.

addkineticlaw (reaction)

addproduct (reaction)

addreactant (reaction)

copyobj (any object)

delete (any object)
display (any object)

rmproduct (reaction)

rmreactant (reaction)

Active

Annotation

KineticLaw

Name

Add kinetic law object to reaction
object

Add product species object to
reaction object

Add species object as a reactant
to reaction object

Copy SimBiology object and its
children

Delete SimBiology object

Display summary of SimBiology
object

Remove species object from
reaction object products

Remove species object from
reaction object reactants

Property to indicate object use
during a simulation

Property with information about
a SimBiology object

Property showing kinetic law for
ReactionRate

Property with name of object

sbioreaction (reaction)

Notes Property with HTML text
describing SimBiology object

Parent Property indicating the parent
object

Products Property to indicate reaction
products

Reactants Property to indicate reaction
reactants.

Reaction Property to indicate the reaction
object reaction

ReactionRate Property containing the reaction
rate equation in reaction object

Reversible Property to indicate whether
a reaction is reversible or
irreversible

Stoichiometry Property that describes species
coefficients in a reaction

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Examples 1 Construct reaction objects.

reactionObj1 sbioreaction('a + 3 b -> 2 ¢c');
reactionObj2 = sbioreaction({'a', 'b'}, [1 3], 'c', 2);

% View the help for the reaction object's Reversible property.
help(robj1, 'Reversible')

4-79

sbioreaction (reaction)

2 View the property summary for reactionObj1.

get(reactionObj1)
Active:
Annotation:
KineticLaw:
Name:
Notes:
Parameters:
Parent:
Products:
Reactants:
Reaction:
ReactionRate:
Reversible:
Stoichiometry:
Tag:
Type:
UserData:

See Also addreaction,sbiomodel

4-80

0
[

1

double]
SimBiology.Species]

SimBiology.Species]
3b->2¢'

-3 2]

'reaction’

[]

sbioroot (root)

Purpose Return SimBiology root object

Syntax rootobj = sbioroot
modelObj = sbioroot('modelName')

Arguments
rootobj Return sbioroot to this object.
modelObj Return the model with name modelName to this
object.
modelName Specify the name of the model that is on the
root object.
Description rootobj = sbioroot returns the SimBiology root object to root. The

SimBiology root object contains a list of the top-level SimBiology model
objects, available units, unit prefixes, and available abstract kinetic
law objects.

modelObj = sbioroot('modelName') returns the top-level SimBiology
model with name, mode1lName to modelObj. A top-level SimBiology
model object has its Parent property set to the SimBiology root object.
A SimBiology model object that has its Parent property set to another
SimBiology model is a submodel and is not stored by the SimBiology
root.

The units define the set of core units and user-defined units. A
user-defined unit can be added with the sbioregisterunit function.
You can remove user-defined unit with the sbiounregisterunit
function. The unit prefixes define the set of core unit prefixes and
user-defined unit prefixes.

You can add a user-defined unit prefix with the
sbioregisterunitprefix function. Remove a user-defined unit prefix
with the sbiounregisterunitprefix function. The abstract kinetic
law objects define the core abstract kinetic law objects and user-defined
abstract kinetic law objects. SimBiology uses abstract kinetic law
objects when configuring a SimBiology reaction object’s KineticLaw
property with the addkineticlaw function.

4-81

sbioroot (root)

Method
Summary

Property
Summary

Examples

4-82

copyobj (any object)

delete (any object)

reset (root)

BuiltInKineticLaws

BuiltInUnitPrefixes

BuiltInUnits
Models

Type

UserDefinedKineticLaws

UserDefinedUnitPrefixes

UserDefinedUnits

Copy SimBiology object and its
children

Delete SimBiology object

Delete all model objects from the
root object

Property containing built-in
kinetic laws

Property containing built-in unit
prefixes

Property containing built-in units

Property showing all model
objects

Property to indicate SimBiology
object type

Property containing user-defined
kinetic laws

Property containing user-defined
unit prefixes

Property containing user-defined
units

1 Get all SimBiology model objects contained by the root.

rootObj = sbioroot;
allmodels = get(rootObj,

'Models');

2 Get the model with name cell (if model is in root).

sbioroot (root)

modelObj = sbioroot('cell');

See Also sbiomodel, addkineticlaw, sbioregisterunit, sbiounregisterunit,
sbioreset

4-83

sbiorule (rule)

4-84

Purpose

Syntax

Arguments

Description

Construct rule object

ruleObj = sbiorule('RuleValue')
ruleObj = sbiorule(RuleValue,

'RuleTypeValue')

ruleObj = sbiorule(...’PropertyName', PropertyValue...)

RuleValue

RuleTypeValue

Enter a character string within quotes. For
example, enter the algebraic rule 'Va*Ea + Vi*Ei
- K2'.

Enter 'algebraic', 'assignment', or 'rate'. An
algebraic or rate rule is evaluated at each time
step during the simulation. An assignment rule is
evaluated once before the simulation starts.Note: if
a species or parameter is marked constant, you can
still assign an initial value using an assignment
rule. The amount or value gets assigned according
to the rule and then remains constant during the
simulation.

A SimBiology rule is a mathematical expression that modifies a species
amount, or a parameter value. A rule is a MATLAB expression that
uses species, and parameters.

ruleobj = sbiorule('Rulevalue')creates a rule object, assigns a value
(Rulevalue) to the property Rule, assigns the value 'algebraic' to the
property RuleType, and assigns the root object to the property Parent.

To use ruleObj in a simulation, ruleObj must be added to a model
object with the function copyobj. Note that a rule can also be added
to a SimBiology model with the addrule function. A model object is
constructed with the function sbiomodel.

ruleObj = sbiorule(RuleValue, 'RuleTypeValue') in addition to the
above, this syntax enables you to specify RuleType.

sbiorule (rule)

ruleObj = sbiorule(...’PropertyName', PropertyValue...) defines
optional properties. The property name/property value pairs can be in
any format supported by the function set (for example, name-value
string pairs, structures, and name-value cell array pairs).

View additional rule properties with the function get, and modify rule
properties with the function set. View the rules in a model (modelObj)
with get (modelObj, 'Rules').

Method
Summary copyobj (any object) Copy SimBiology object and its
children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology
object
Property
Summqry Active Property to indicate object use
during a simulation
Annotation Property with information about
a SimBiology object
Name Property with name of object
Notes Property with HTML text
describing SimBiology object
Parent Property indicating the parent
object
Rule Property to define certain species
and parameter interactions
RuleType Property for defining the type of
rule for the rule object.
Tag Property to specify a label for a
SimBiology object

4-85

sbiorule (rule)

Examples

See Also

4-86

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Example 1

Construct a rule object and copy to a model object.

robj = sbiorule('Enzt - Enzi - Enza)');
modelObj = sbiomodel('cell’)
robj_copy = copyobj(robj, modelObj);

Example 2

View the help for the rule object’s RuleType property.
help(robj, 'RuleType')

Example 3

List the properties for a rule.
get(robj)

Active: 1
Annotation: "'
Name: ''
Notes: "'
Parent: []
Rule: 'myrule'’
RuleType: 'algebraic'
Tag: ''
Type: 'rule’
UserData: []

addrule, shiomodel, copyobj

sbiospecies (species)

Purpose Construct species object
Syntax speciesObj = sbiospecies('NameValue')
speciesObj = sbiospecies('NameValue') ,InitialAmountValue)
speciesObj = sbiospecies(...’PropertyName', PropertyValue...)
Arguments
NameValue Name for a species object. Enter a character

string unique to the level of object creation.
Species objects are identified by Name within
ReactionRate and Rule property strings.
You can use the function sbioselect to find
an object with a specific Name property value.

IntialAmountValue Initial amount value for the species object.
Enter double. Positive real number,
default = 0.
Description speciesObj = sbiospecies('NameValue') constructs a

SimBiology.Species object, enters a value (NameValue) for
the property Name, and returns the object (speciesObj).

speciesObj = sbiospecies('NameValue'),InitialAmountValue)in addition
to the above, assigns an initial amount (InitialAmountValue) for the
species.

Species are entities that take part in reactions. A species object
represents these entities. There are reserved characters you cannot use
in species object name (NameValue)

See “Valid Species Names” on page 4-37 for more information on species
names.

In order for a species object to be used in a simulation, the species
object must be added to a SimBiology model object using copyobj. You
can useaddspecies to simultaneously create a species object and add it
to a model object. A SimBiology model object is constructed with the
function sbiomodel.

4-87

sbiospecies (species)

speciesObj = sbiospecies(...’PropertyName', PropertyValue...)
defines optional properties. The property name/property value pairs
can be in any format supported by the function set (for example,
name-value string pairs, structures, and name-value cell array pairs).

View species object properties with the function get, and change
properties with the function set. You can find help for speciesObj
properties with the help PropertyName command and help for functions
with the sbiohelp FunctionName command.

Method Methods for species objects.
Summary
copyobj (any object) Copy SimBiology object and its
children
delete (any object) Delete SimBiology object
display (any object) Display summary of SimBiology
object
Property Properties for species object
Summary
Annotation Property with information about
a SimBiology object
BoundaryCondition Property to set a species object to
have a boundary condition
ConstantAmount Property to specify variable or
constant species amount
InitialAmount Property containing initial
amount of a species
InitialAmountUnits Property containing units for
species initial amount
Name Property with name of object
Notes Property with HTML text

describing SimBiology object

4-88

sbiospecies (species)

Parent Property indicating the parent
object
Tag Property to specify a label for a

SimBiology object

Type Property to indicate SimBiology
object type

UserData Property to specify data to
associate with object

Examples Example 1

Create a species (H20) and view properties for the object.
1 Create a species object with name H20 and initial amount 1000.

speciesObj = sbiospecies('H20', 1000);
% View the help for the species object's InitialAmount property.
help(speciesObj, 'InitialAmount')

2 View properties for the species object.

get(sobj)
Annotation: ''
ConstantAmount: O
InitialAmount: 1000
InitialAmountUnits: "'
Name: 'H20'
Notes: "'
Parent: []
Tag: '
Type: 'species'
UserData: []

4-89

sbiospecies (species)

Example 2
Create two species, one is a reactant and the other is the enzyme
catalyzing the reaction.

1 Create two species objects with the names glucose 6 phosphate
and glucose 6 _phosphate dehydrogenase.

speciesObj1 = sbiospecies ('glucose_6 phosphate');
speciesObj2 sbiospecies ('glucose_ 6 phosphate_dehydrogenase');

2 Set initial amount of glucose 6 phosphate to 100 and verify.

set(speciesObj (1), 'InitialAmount', 100);
get(speciesObj (1), 'InitialAmount’')

MATLAB returns
ans =

100

See Also addspecies,
MATLAB functionsget and set.

4-90

setactiveconfigset (model)

Purpose Set the active configuration set for model object

Syntax configsetObj = setactiveconfigset (modelObj,
'NameValue')
configsetObj2 = setactiveconfigset (modelObj, configsetObj1)

Description configsetObj = setactiveconfigset(modelObj, 'NameValue') sets the
configuration set NameValue to be the active configuration set for the
model modelObj and returns to configsetObj.

configsetObj2 = setactiveconfigset (modelObj, configsetObj1) sets the
configset configsetObj1 to be the active configset for modelObj and
returns to configsetObj2. Any change in one of these two configset
objects configsetObj1 and configsetObj2 is reflected in the other. To
copy over a configset object from one model object to another use the
copyobj method.

The active configuration set contains the settings that are be used
during a simulation. A default configuration set is attached to any new
model.

Examples 1 Create a model object by importing the file oscillator.xml and add
a configset that simulates for 3000 seconds.

modelObj = sbmlimport('oscillator');
configsetObj = addconfigset(modelObj, 'myset');

2 Configure the configsetObj StopTime to 3000.

set(configsetObj, 'StopTime', 3000)
get(configsetObj)

Active: O
CompileOptions: [1x1 SimBiology.CompileOptions]
Name: 'myset’
Notes: "'

4-91

setactiveconfigset (model)

4-92

RuntimeOptions: [1x1 SimBiology.RuntimeOptions]
SolverOptions: [1x1 SimBiology.ODESolverOptions]
SolverType: 'odeil5s'
StopTime: 3000
StopTimeType: 'simulationTime'
TimeUnits: 'second’
Type: 'configset'

3 Set the new configset to be active, simulate the model using the
new configset and plot the result

setactiveconfigset(modelObj, configsetObj);

[t,x] = sbiosimulate(modelObj);
plot (t,x)

See Also addconfigset, getconfigset, removeconfigset

setparameter (kineticlaw)

Purpose Specify specific parameters in kinetic law object
Syntax setparameter (kineticlawObj,

'ParameterVariablesValue', 'ParameterVariableNamesValue')
Arguments

ParameterVariableValue Specify value of parameter variable in

kinetic law object.

ParameterVariableNamesValueSpecify the parameter name with
which to configure parameter variable
in kinetic law object. Determines
parameters in ReactionRate equation.

Description Configure ParameterVariableNames in kinetic law object.

setparameter(kineticlawObj, 'ParameterVariablesValue',
'ParameterVariableNamesValue') configures the
ParameterVariableNames property of the kinetic law object
(kineticlawObj). ParameterVariableValue corresponds to one of
the strings in kineticlawObj ParameterVariables property. The
corresponding element inkineticlawObjParameterVariableNames
property is configured to ParameterVariableNamesValue.

For example, if ParameterVariables is {'Vm', 'Km'} and
ParameterVariablesValue is specified as Vm, then the first
element of the ParameterVariableNames cell array is configured to
ParameterVariableNamesValue.

Example Create a model, add a reaction, and assign the ParameterVariableNames
for the reaction rate equation.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

4-93

setparameter (kineticlaw)

4-94

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should be set. To set these variables,

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj, 'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns
ans =
1 Va 1 1 Ka 1

See Also addparameter, getspecies, setspecies

setspecies (kineticlaw)

Purpose Specify species in kinetic law object

Syntax setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue')

Arguments
SpeciesVariablesValue Specify species variable in kinetic
law object.
SpeciesVariableNamesValue Specify the species name with
which to configure species variable
in kinetic law object. Determines
species in ReactionRate equation

Description setspecies configures kinetic law object SpeciesVariableNames
property.

setspecies(kineticlawObj, 'SpeciesVariablesValue',
'SpeciesVariableNamesValue') configures the SpeciesVariableNames
property of the kinetic law object, kineticlawObj.
SpeciesVariablesValue corresponds to one of the strings in
SpeciesVariables property of kineticlawObj. The corresponding
element in kineticlawObj SpeciesVariableNames property is
configured to SpeciesVariableNamesValue.

For example, if SpeciesVariables are{'S', 'S1'} and
SpeciesVariablesValue is specified as S1, the first element
of the SpeciesVariableNames cell array is configured to
SpeciesVariableNamesValue.

Example Create a model, add a reaction and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

4-95

setspecies (kineticlaw)

4-96

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that should be set. To set this variable,

setspecies(kineticlawObj,'S', 'a');
4 Verify that the species variable is correct.

get (kineticlawObj, 'SpeciesVariableNames')

MATLAB returns
ans =
1 a 1

See Also SimBiology method addparameter getspecies, setparameter

Properties — Categorical
List

This chapter is a reference for the object properties in SimBiology. Properties
are grouped into the following categories.

Abstract Kinetic Law (p. 5-2)

Configuration Sets (p. 5-3)

Kinetic Laws (p. 5-4)

Models (p. 5-5)

Parameters (p. 5-6)

Reactions (p. 5-7)

Root (p. 5-8)

Rules (p. 5-9)

Species (p. 5-10)

Using Object Properties (p. 5-11)

Properties for abstract kinetic law
objects

Properties for configuration set
objects

Properties for kinetic law objects.
Properties for model objects
Properties for parameter objects
Properties for reaction objects
Properties for the root object
Properties for rule objects
Properties for species objects

Command line syntax for entering
and retrieving property values.

5 Properties — Categorical List

5-2

Abstract Kinetic Law

Properties for abstract kinetic law objects

Annotation

Expression

Name

Notes

ParameterVariables

Parent

SpeciesVariables

Tag

Type

UserData

Property with information about a
SimBiology object

Property containing the expression
used to determine the reaction rate
equation

Property with name of object

Property with HTML text describing
SimBiology object

Property showing parameters in
abstract kinetic law

Property indicating the parent object

Property showing species in abstract
kinetic law

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

Configuration Sefs

Configuration Sets

Properties for configuration set objects.

Active Property to indicate object use
during a simulation

CompileOptions Property holding dimensional
analysis and unit conversion
information

Name Property with name of object

Notes Property with HTML text describing
SimBiology object

RuntimeOptions Property holding options for logged
species

SolverOptions Property holding the model solver
options

SolverType Property to select solver type for
simulation

StopTime Property to set the stop time for a
simulation

StopTimeType Property to specify the type of stop

time for a simulation

TimeUnits Property to show the stop time units
for a simulation

Type Property to indicate SimBiology
object type

5-3

5 Properties — Categorical List

5-4

Kinetic Laws
Properties for kinetic law object

Annotation

Expression

KineticLawName

Name
Notes

Parameters
ParameterVariableNames
ParameterVariables

Parent

SpeciesVariables

SpeciesVariablesNames

Tag

Type

UserData

Property with information about a
SimBiology object

Property containing the expression
used to determine the reaction rate
equation

Property showing name of abstract
kinetic law

Property with name of object

Property with HTML text describing
SimBiology object

Property with array of parameter
objects

Property showing cell array of
reaction rate parameters

Property showing parameters in
abstract kinetic law

Property indicating the parent object

Property showing species in abstract
kinetic law

Property showing cell array of
species used in reaction rate
equation

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

Models

Models

Properties for model objects

Annotation

Models
Name

Notes

Parameters

Parent

Reactions

Rules

Species

Tag

Type

UserData

Property with information about a
SimBiology object

Property showing all model objects
Property with name of object

Property with HTML text describing
SimBiology object

Property with array of parameter
objects

Property indicating the parent object

Property with an array of reaction
objects.

Property showing rules in model
object

Property showing species in model
object

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

5-5

5 Properties — Categorical List

5-6

Parameters

Properties for parameter objects

Annotation

ConstantValue

Name

Notes

Parent

Tag

Type

UserData

Value

ValueUnits

Property with information about a
SimBiology object

Property to indicate variable or
constant parameter value

Property with name of object

Property with HTML text describing
SimBiology object

Property indicating the parent object

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

Property to assign value to
parameter object

Property with parameter value units

Reactions

Reactions

Properties for reaction objects

Active

Annotation

KineticLaw

Name

Notes

Parent

Products

Reactants

Reaction

ReactionRate

Reversible

Stoichiometry

Tag

Type

UserData

Property to indicate object use
during a simulation

Property with information about a
SimBiology object

Property showing kinetic law for
ReactionRate

Property with name of object

Property with HTML text describing
SimBiology object

Property indicating the parent object

Property to indicate reaction
products

Property to indicate reaction
reactants.

Property to indicate the reaction
object reaction

Property containing the reaction
rate equation in reaction object

Property to indicate whether a
reaction is reversible or irreversible

Property that describes species
coefficients in a reaction

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

5-7

5 Properties — Categorical List

5-8

Root

Properties for the root object

BuiltInKineticLaws

BuiltInUnitPrefixes

BuiltInUnits
Models

Type

UserDefinedKineticLaws

UserDefinedUnitPrefixes

UserDefinedUnits

Property containing built-in kinetic
laws

Property containing built-in unit
prefixes

Property containing built-in units
Property showing all model objects

Property to indicate SimBiology
object type

Property containing user-defined
kinetic laws

Property containing user-defined
unit prefixes

Property containing user-defined
units

Rules

Rules

Properties for rule objects

Active Property to indicate object use
during a simulation

Annotation Property with information about a
SimBiology object

Name Property with name of object

Notes Property with HTML text describing
SimBiology object

Parent Property indicating the parent object

Rule Property to define certain species
and parameter interactions

RuleType Property for defining the type of rule
for the rule object.

Tag Property to specify a label for a
SimBiology object

Type Property to indicate SimBiology

object type

UserData Property to specify data to associate
with object

5-9

5 Properties — Categorical List

Species

Properties for species objects

Annotation

BoundaryCondition

ConstantAmount

InitialAmount

InitialAmountUnits

Name

Notes

Parent

Tag

Type

UserData

5-10

Property with information about a
SimBiology object

Property to set a species object to
have a boundary condition

Property to specify variable or
constant species amount

Property containing initial amount
of a species

Property containing units for species
initial amount

Property with name of object

Property with HTML text describing
SimBiology object

Property indicating the parent object

Property to specify a label for a
SimBiology object

Property to indicate SimBiology
object type

Property to specify data to associate
with object

Using Object Properties

Using Object Properties
Command line syntax for entering and retrieving property values.

Entering property values (p. 5-11) Use either MATLAB functions or
object dot notation to enter or change
property values.

Retrieving property values (p. 5-11) Use either MATLAB functions or
object dot notation to get property

values.
Help for Objects, Methods and Use the command sbiohelp to get
Properties (p. 5-12) information about properties.

Entering property values
Enter or change a single property value using dot notation.

ObjectName.PropertyName = PropertyValue

Enter or change one or more property values using the MATLAB function set.

set(ObjectName, 'Propertyname', PropertyvValue, ...)

Retrieving property values
Retrieve a single property value using dot notation.

PropertyValue = ObjectName.PropertyName

Retrieve one or more property values using the MATLAB function get.
PropertyValue(s) = get(ObjectName, 'PropertyName', ...)

Retrieve one or more property values using the object method get.
PropertyValue(s) = ObjectName.get('PropertyName', ...)

List or retrieve all property values using one of the following commands.

get(ObjectName)
AllPropertyValues = get(ObjectName)

5-11

5 Properties — Categorical List

5-12

ObjectName.get

Help for Objects, Methods and Properties

Display information for SimBiology object methods and properties in the
MATLAB Command Window.

help sbio Display a list of functions and
methods.

help FunctionName Display function information.

sbiohelp('MethodName"') Display method information.

sbiohelp('PropertyName') Display property information.

Properties — Alphabetical
List

AbsoluteTolerance

6-2

Purpose

Description

Characteristics

Property to specify largest allowable absolute error

AbsoluteTolerance specifies the largest allowable absolute error

at any step in simulation. It is a property of SolverOptions

object. SolverOptions is a property of the configset object.
AbsoluteTolerance is available for the ode solvers ('ode45', '0de23",
'ode113', 'ode15s', 'ode23s', 'ode23t', and 'ode23th"').

At each simulation step, the solver estimates the local error e, in the i*"
state vector y. Simulation converges at that time step if e, satisfies the
following equation:

| e;| < max(RelativeTolerance* |y;|, AbsoluteTolerance)

Thus at higher state values, convergence is determined by
RelativeTolerance. As the state values approach zero, convergence
is controlled by AbsoluteTolerance. The choice of values for
RelativeTolerance and AbsoluteTolerance will vary depending on
the problem. The default values should work for first trials of the
simulation; however if you want to optimize the solution, consider
that there is a trade-off between speed and accuracy. If the simulation
takes too long, you can increase the values of RelativeTolerance and
AbsoluteTolerance at the cost of some accuracy. If the results appear
to be inaccurate you can decrease the tolerance values but this will slow
down the solver. If the magnitude of the state values is high, you can
try to decrease the relative tolerance to get more accurate results.

This may be important for reactions where species values tend to zero.
Even if you are not interested in the value of a state y(i) when it

is small, you may have to specify AbsoluteTolerance small enough
to get some correct digits in y (i) so that you can accurately compute
more interesting state values.

Applies to Object: SolverOptions
Data type double

AbsoluteTolerance

Data values >0, <1; default is 1e-6
Access Read/Write
Example This example shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'AbsoluteTolerance', 1.0e-8)
get(configsetObj.SolverOptions, 'AbsoluteTolerance')

ans =

1.0000e-008

See Also RelativeTolerance

6-3

Active

Purpose Property to indicate object use during a simulation

Description Indicates whether a simulation is using a SimBiology object. A
SimBiology model is organized into a hierarchical group of objects. Use
the Active property to include or exclude objects during a simulation.
When a reaction or rule object Active property is set to be false, the
simulation does not include the reaction or rule. This is a convenient
way to test a model with and without a reaction or rule. For configset
object, use the method setactiveconfigset, to set the object Active
property to true.

Characteristics
Applies to Objects: configset, reaction, rule
Data type boolean
Data values true or false. Default value is true. For
default configset object default is true, for
added configset object default is false.
Access Read/Write
Example 1 Create a model object.

modelObj = sbiomodel ('my_model');

2 Add reaction object and verify that the Active property setting is
"true' or 1.

reactionObj = addreaction (modelObj, 'a + b ->c + d');
get (reactionObj, 'Active')

MATLAB returns

ans =
1

3 Set Active property to 'false' and verify.

6-4

Active

set (reactionObj, 'Active', false);
get (reactionObj, 'Active')

MATLAB returns
ans =

0

See Also addreaction, addrule, setactiveconfigset, addconfigset

6-5

Annotation

Purpose
Description

Characteristics
Applies to

Data type

Data values

Property with information about a SimBiology object

URL or filename linking to information about a model.

Objects: kineticlaw, model, parameter, reaction,
root, rule, species

char string, URL
Character string with a directory path and

filename or a URL.
Access Read/Write

Example 1 Create a model object
modelObj = sbiomodel ('my_model');
2 Set annotation for model object
set (modelObj, 'annotation', 'www.reactome.org')

3 Verify the assignment.

get (modelObj, 'annotation')
MATLAB returns
ans =

www.reactome.org

See Also sbiomodel, addkineticlaw, addparameter, addreaction, addrule,

addspecies, sbioroot

6-6

BoundaryCondition

Purpose Property to set a species object to have a boundary condition

Description Indicates whether a species object has a boundary condition. If
BoundaryCondition is true, the species quantity is determined by
InitialAmount and/or a rule object, and not by the reaction rate
equation. In SimBiology, all species are state variables regardless of
BoundaryCondition or ConstantAmount property.

By default BoundaryCondition is false and SimBiology uses reaction
rate equations to determine the rate of change of a species quantity in
the model. Boundary condition is used when a species is modeled as

a participant of reactions but the species quantity is not determined
by a reaction rate equation. Consider the following two use cases of
boundary conditions:

® Modeling receptor-ligand interactions that affect the rate of change
of the receptor but not the ligand. For example, in response to
hormone, steroid receptors such as the glucocorticoid receptor (GR)
translocate from the cytoplasm (cyt) to the nucleus (nuc). The hsp90/
hsp70 chaperone complex directs this nuclear translocation [Pratt
2004]. The natural ligand for GR is cortisol; the synthetic hormone
dexamethasone (dex) is used in place of cortisol in experimental
systems. In this system dexamethasone participates in the reaction
but the quantity of dexamethasone in the cell is regulated using a
rule. To simply model translocation of GR you could use the following
reactions:

Formation of the chaperone-receptor complex,
Hsp90 complex + GR_cyt -> Hsp90 complex:GR_cyt

In response to the synthetic hormone dexamethasone (dex), GR
moves from the cytoplasm to the nucleus.

Hsp90 complex:GR_cyt + dex -> Hsp90 complex + GR_nuc + dex

For dex,

BoundaryCondition = true; ConstantAmount = false

BoundaryCondition

Characteristics

Example

6-8

In this example dex is modeled as a boundary condition with a rule to
regulate the rate of change of dex in the system. Here, the quantity
of dex is not determined by the rate of the second reaction but by

a rate rule such as

ddex/dt = 0.001

which is specified in SimBiology as

dex = 0.001

® Modeling the role of nucleotides (for example, GTP, ATP, cAMP) and

cofactors (for example, Ca**, NAD*, coenzyme A). Consider the role of
GTP in the activation of Ras by receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP
For GTP, BoundaryCondition = true; ConstantAmount = true

Model GTP and GDP with boundary conditions, thus making them
boundary species. In addition you can set the ConstantAmount
property of these species to true to indicate that their quantity does
not vary during a simulation.

Applies to Object: species

Data type boolean

Data values true or false. The default value is false.
Access Read/Write

1 Create a model object

modelObj = sbiomodel ('my_model');

BoundaryCondition

2 Add a species object and verify that boundary condition property
setting is 'false' or 0.

speciesObj = addspecies(modelObj, 'glucose');
get(speciesObj, 'BoundaryCondition')

MATLAB returns

ans =

3 Set boundary condition to 'true' and verify

set(speciesObj, 'BoundaryCondition', true);
get(speciesObj, 'BoundaryCondition')

MATLAB returns

ans =
1
References Pratt, W.B., Galigniana, M.D., Morishima, Y., Murphy, P.J. (2004), Role
of molecular chaperones in steroid receptor action, Essays Biochem,
40:41-58.
See Also addrule, addspecies, ConstantAmount InitialAmount

6-9

BuiltinKineticLaws

Purpose Property containing built-in kinetic laws

Description BuiltInKineticLaws is a SimBiology root object property showing
all abstract kinetic laws that are shipped with SimBiology. Use the
command sbiowhos -builtin -kineticlaw to see the list of built-in
kinetic laws. You can use built-in kinetic laws when you use the
command addkineticlaw to create a kinetic law object for a reaction
object. Refer to the kinetic law by name when you create the kinetic law
object, for example:

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

You cannot add, modify, or delete BuiltInKineticLaws.

See “Abstract Kinetic Law” on page 6-27 for a definition and more

information.
Characteristics
Applies to Object: root
Data type char string of valid abstract kinetic law
name.
Data values Valid kinetic laws
Access Read-only
Examples Example 1

This example uses the command sbiowhos to show the current list of
built-in kinetic laws.

sbiowhos -builtin -kineticlaw

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 BuiltlIn Unknown Unknown
2 BuiltlIn MassAction MassAction

6-10

BuiltinKineticLaws

3 BuiltIn Henri-Michaelis-Menten Vm*S/(Km + S

Example 2

This example shows the current list of built-in kinetic laws by accessing
the root object.

rootObj = sbioroot;
get(rootObj, 'BuiltInKineticlLaws')

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:

1 BuiltIn Unknown Unknown

2 BuiltIn MassAction MassAction

3 BuiltIn Henri-Michaelis-Menten Vm*S/(Km + S
See Also UserDefinedKineticlLaws, BuiltInUnits, BuiltInUnitPrefixes

MATLAB functions get and set

6-11

BuiltinUnitPrefixes

6-12

Purpose

Description

Characteristics

Examples

Property containing built-in unit prefixes

BuiltInUnitPrefixes is a SimBiology root object property showing
all unit prefixes that are shipped with SimBiology. You can specify
units with prefixes for species amounts and parameter values, because,
SimBiology enables you to do dimensional analysis and unit conversion
during simulation. The valid units and unit prefixes are either built-in
or user-defined. You can display the built-in unit prefixes either by
using the command sbiowhos, or by accessing the root object. Both
methods are illustrated in the examples below.

You cannot add, modify, or delete BuiltInUnitsPrefixes.

Applies to Object: root

Data type char string

Data values Valid units

Access Read-only
Example 1

This example uses the command sbiowhos to show the current list of
built-in unit prefixes.

sbiowhos -builtin -unitprefix

Example 2

This example shows the current list of built-in unit prefixes by accessing
the root object.

rootObj = sbioroot;
get(rootObj, 'BuiltInUnitPrefixes')

BuiltinUnitPrefixes

See Also BuiltInUnitPrefixes, UserDefinedUnits, BuiltInKineticlLaws
MATLAB functions get and set.

6-13

BuiltinUnits

Pu rpose Property containing built-in units

Description BuiltInUnits is a SimBiology root object property showing all units
that are shipped with SimBiology. You can specify units for species
amounts and parameter values, because, SimBiology enables you to do
dimensional analysis and unit conversion during simulation. The valid
units are either built-in or user-defined. You can display the built-in
units either by using the command sbioswhos, or by accessing the root
object. Both methods are illustrated in the examples below.

You cannot add, modify, or delete BuiltInUnits.

Characteristics
Applies to Object: root
Data type char string
Data values Valid units.
Access Read-only
Examples Example 1

This example shows the current list of built-in units using the sbiowhos
command.

sbiowhos -builtin -units

Example 2

This example shows the current list of built-in units by accessing the
root object.

rootObj = sbioroot;
get(rootObj, 'BuiltInUnits')

See Also BuiltInUnitPrefixes, UserDefinedUnits, BuiltInKineticlLaws

6-14

BuiltinUnits

MATLAB functions get and set.

6-15

CompileOptions

6-16

Pu rpose Property holding dimensional analysis and unit conversion information

Description The SimBiology CompileOptions object defines the compile options
available for simulation; you can specify whether dimensional analysis
and unit conversion is necessary for simulation. Compile options
are checked during compile time. The compile options object can be
accessed through the CompileOptions property of the configset object.
Retrieve CompileOptions object properties with the get function and
configure the properties with the set function.

Property
Summqry DimensionalAnalysis Property to indicate whether to
perform dimensional analysis
Type Property to indicate SimBiology
object type
UnitConversion Property to indicate whether to
perform unit conversion.
Characteristics
Applies to Object: configset object
Data type Object
Data values Compile time options
Access Read-only
Example 1 Retrieve the configset object of model0bj

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the CompileOptions object (optionsObj) from the
configsetObj

optionsObj = get(cs, 'CompileOptions');

CompileOptions
|

DimensionalAnalysis: 1
Type: 'compileoptions'
UnitConversion: 1

See Also MATLAB functions get, set

6-17

ConstantAmount

Purpose Property to specify variable or constant species amount

Description ConstantAmount indicates whether the quantity of the species object
can vary during the simulation. ConstantAmount can be either true
or false. If ConstantAmount is true, the quantity of the species
cannot vary during the simulation. By default, ConstantAmount is
false and the quantity of the species can vary during the simulation.
If ConstantAmount is false, the quantity of the species can be
determined by reactions and rules.

The following is example of modeling species as constant amounts:

Modeling the role of nucleotides (GTP, ATP, cAMP) and cofactors (Ca**,
NAD*, coenzyme A. Consider the role of GTP in the activation of Ras by
receptor tyrosine kinases.

Ras-GDP + GTP -> Ras-GTP + GDP

Model GTP and GDP with constant amount set to true. In addition,
you can set the BoundaryCondition of these species to true, thus
making them boundary species.

The property ConstantAmount is for species objects; the property
ConstantValue is for parameter objects.

Characteristics
Applies to Object: species
Data type boolean
Data values true or false. The default value is false.
Access Read/Write
Example 1 Create a model object with name my_ model.

modelObj = sbiomodel ('my_model');

2 Add a species object and verify that the ConstantAmount property
setting is 'false' or O

6-18

ConstantAmount

speciesObj = addspecies (modelObj, 'glucose');
get (speciesObj, 'ConstantAmount')

MATLAB returns

ans =

3 Set constant amount to 'true' and verify

set (speciesObj, 'ConstantAmount', true);
get (speciesObj, 'ConstantAmount')

MATLAB returns

ans =

See Also addspecies, BoundaryCondition

6-19

ConstantValue

6-20

Purpose

Description

Characteristics

Property to indicate variable or constant parameter value

Indicates whether the value of a parameter can change during a
simulation. Enter either true (value is constant) or false (value can
change).

You can allow the value of the parameter to change during a simulation
by specifying a rule that changes the Value property of the parameter
object. For example, consider feedback inhibition of an enzyme such as
aspartate kinase by threonine. Aspartate kinase has three isozymes
that are independently inhibited by the products of downstream
reactions (threonine, homoserine, and lysine). Although threonine

is made through a series of reactions in the synthesis pathway, for
illustration the reactions are simplified as follows:

aspartate kinase

Aspartic acid B — Aspartylphosphate

B — Aspartylphosphate —— Threonine
To model inhibition of aspartate kinase by threonine you could use
a rule like the algebraic rule below to vary the rate of the above
reaction and simulate inhibition. In the rule, the rate constant for the
above reaction is denoted by k_aspartate _kinase and the quantity
of threonine is threonine.

k_aspartate_kinase -(1/threonine)

The property ConstantValue is for parameter objects; the property
ConstantAmount is for species objects.

Applies to Object: parameter

Data type boolean

Data values true or false. Default value is 'true"'.
Access Read/Write

ConstantValue

Example 1 Create a model object.
modelObj = sbiomodel ('my_model');
2 Add parameter object.

parameterObj = addparameter (modelObj, 'kf');

3 Change the ConstantValue property of the parameter object from
default (true) to false and verify.

MATLAB returns 1 for true and 0 for false.

set (parameterObj, 'ConstantValue', false)
get(parameterObj, 'ConstantValue')

MATLAB returns

ans =

See Also addparameter

6-21

DimensionalAnalysis

Purpose Property to indicate whether to perform dimensional analysis

Description DimensionalAnalysis specifies whether to perform dimensional
analysis on the model before simulation. It is a property of the
CompileOptions object. CompileOptions holds the model’s compile
time options and is the object property of the configset object. When
DimensionalAnalysis is set to true, SimBiology checks whether the
physical quantities of the units involved in reactions and rules, match
and are applicable.

For example, consider a reaction a + b > c. Using mass action
kinetics, the reaction rate is defined as a*b*k where k is the rate
constant of the reaction. If you specify that initial amounts of a and b
are 0.01M and 0.005M respectively, then units of k are 1/ (M*second).
If you specify k with another equivalent unit definition, for example
1/[(moles/liter)*second], DimensionalAnalysis checks whether
the physical quantities match. If the physical quantities do not match,
you see an error and the model is not simulated, UnitConversion is the
next step after DimensionalAnalysis.

Valid physical quantities for reaction rates are amount/time, mass/time
or concentration/time.

Characteristics
Applies to Object: CompileOptions (in configset
object)
Data type boolean
Data values true or false. Default value is true.
Access Read/Write
Example Shows how to retrieve and set DimensionalAnalysis from the default

true to false in the default configuration set in a model object.

1 Import a model.

modelObj = sbmlimport('oscillator')

6-22

DimensionalAnalysis

SimBiology Model - Oscillator

Model Components:

Models: 0
Parameters: 0
Reactions: 42
Rules: 0
Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)

SolverType: ode15s

StopTime: 10.000000
SolverOptions:

AbsoluteTolerance: 1.000000e-006

RelativeTolerance: 1.000000e-003
RuntimeOptions:

StatesTolLog: all
CompileOptions:

UnitConversion: true

DimensionalAnalysis: true
3 Retrieve the CompileOptions object.
optionsObj = get(configsetObj, 'CompileOptions')
Compile Settings:

UnitConversion: true
DimensionalAnalysis: true

4 Assign a value of false to DimensionalAnalysis.

6-23

DimensionalAnalysis

set(optionsObj, 'DimensionalAnalysis' false)

See Also getconfigset, sbiosimulate
MATLAB functions get and set.

6-24

ErrorTolerance

Pu rpose Property specifies explicit or implicit tau error tolerance

Description ErrorTolerance specifies the error tolerance for the explicit tau and
implicit tau stochastic solvers. It is a property of the SolverOptions
object. SolverOptions is a property of the configset object. The
explicit and implicit tau solvers automatically chooses a time interval
(tau) such that the relative change in the propensity function for each
reaction is less than the user-specified error tolerance.

A propensity function describes the probability that the reaction will
occur in the next smallest time interval, given the conditions and
constraints.

If the error tolerance is too large, there may not be a solution to the
problem and that could lead an error. If the error tolerance is small,
the solver will take more steps than when the error tolerance is large
leading to longer simulation times. The error tolerance should be
adjusted depending upon the problem, but a good value for the error
tolerance is between 1 %to 5 %.

Characteristics
Applies to Object: SolverOptions
Data type double
Data values >0, <1; default is 3e-2
Access Read/Write
Example Shows how to change ErrorTolerance settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)
set(configsetObj, 'SolverType', 'expltau')

2 Change the ErrorTolerance to 1e-8.

6-25

ErrorTolerance

set(configsetObj.SolverOptions, 'ErrorTolerance', 5.0e-2)
get(configsetObj.SolverOptions, 'ErrorTolerance')

ans =

5.000000e-002

See Also LogDecimation, RandomState

6-26

Expression

Purpose Property containing the expression used to determine the reaction rate
equation
Description Indicates the expression that is used to determine the ReactionRate

property of the reaction object. Expression is a reaction rate expression
assigned by the abstract kinetic law used by the kinetic law object.

The abstract kinetic law being used is indicated by the property
KineticLawName. You can configure Expression for user-defined
abstract kinetic laws but not for builtin abstract kinetic laws.
Expression in read-only for kinetic law objects.

Abstract Kinetic Law

The abstract kinetic law provides a mechanism for applying a specific
rate law to multiple reactions. It acts as a mapping template for the
reaction rate. The abstract kinetic law is defined by a reaction rate
expression, which is defined in the property Expression, and the
species and parameter variables used in the expression. The species
variables are defined in the SpeciesVariables property, and the
parameter variables are defined in the ParametervVariablesproperty
of the kinetic law object.

If a reaction is using an abstract kinetic law, the ReactionRate
property of the reaction object shows the result of a mapping from
an abstract kinetic law. To determine ReactionRate the species
variables and parameter variables that participate in the reaction
rate should be clearly mapped in the kinetic law for the reaction.
In this case SimBiology determines the ReactionRate by using
theExpression property of the abstract kinetic law object, and
by mapping SpeciesVariableNames to SpeciesVariables and
ParameterVariableNames to ParameterVariables.

For example, the abstract kinetic law Henri-Michaelis-Menten has

the Expression Vm*[S]/(Km + [S]), where Vm and Km are defined

as parameters in the ParameterVariables property of the abstract
kinetic law object, and S is defined as a species in the SpeciesVariable
property of the abstract kinetic law object.

6-27

Expression

By applying the abstract kinetic law Henri-Michaelis-Menten to a
reaction A -> B with Va mapping to Vm and A mapping to S the rate

equation for the reaction becomes Va*[A]l/(Ka + [A]).

The exact expression of a reaction using MassAction kinetic law varies
depending upon the number of reactants. Thus, for mass action kinetics
the Expression property is set to MassAction because In general for
mass action kinetics the reaction rate is defined as

nr
r =k J1Si™
i=1

where [Si] is the concentration of the i*" reactant, m. is the
stoichiometric coefficient of [Si], n_is the number of reactants and k is
the mass action reaction rate constant.

SimBiology comes with some built-in kinetic laws. Users can also define
their own abstract kinetic laws. To find the list of available kinetic laws,
use the sbiowhos -kineticlaw command (sbiowhos). You can create
an abstract kinetic law with the function sbioabstractkineticlaw and
add it to the library using sbioaddtolibrary.

Characteristics
Applies to Objects: kineticlaw, abstract
kineticlaw
Data type char string
Data values Defined by abstract kinetic law
Access Read-only in kinetic law object.
Read/Write in user-defined
abstract kinetic law.
Examples Example with Henri-Michaelis-Menten kinetics

1 Create a model object, and add a reaction object to the model.

modelObj = sbiomodel ('my_model');

6-28

Expression

reactionObj = addreaction (modelObj, 'a + b ->c + d');
2 Define a kinetic law for the reaction object

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

3 Verify that the Expression property for the kinetic law object is
Henri-Michaelis-Menten

get (kineticlawObj, 'Expression')

MATLAB returns

ans =
Vm*[S]/(Km + [S])

4 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) and one species variable (S) that you should
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with names
Vm_d, Km_d, and assign the objects Parent property value to the
kineticlawObj. The species object with Name,a is created when
reactionObjis created and need not be redefined.

parameterObj1 addparameter(kineticlawObj, 'Vm_d');
parameterObj2 = addparameter(kineticlawObj, 'Km d');

5 Set the variable names for the kinetic law object

set(kineticlawObj, 'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj, 'SpeciesVariableNames', {'a'});

6 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property

get (reactionObj, 'ReactionRate')

MATLAB returns

6-29

Expression

ans =
Vm_d*[a]/(Km_d+[a])
Example with Mass Action kinetics.

1 Create a model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b ->c + d');

2 Define a kinetic law for the reaction object

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');
get(kineticlawObj, 'Expression')

MATLAB returns
ans =
MassAction

3 Assign the rate constant for the reaction.

set (kineticlawObj, 'ParameterVariablenames', 'k');
get (reactionObj, 'ReactionRate')

MATLAB returns
ans =

[kl1*[a]*[b]

See Also Abstract and kinetic law object properties: SpeciesVariables,
ParameterVariables

Kinetic law object properties: KineticLawName, Parameters,
SpeciesVariableNames, ParameterVariableNames

6-30

Expression

Reaction object property: ReactionRate

Functions: sbioaddtolibrary,sbiowhos

6-31

Initial Amount

Purpose Property containing initial amount of a species
Description Indicates the initial quantity of the SimBiology species object.
InitialAmount is the quantity of the species before the simulation
starts.
Characteristics
Applies to Object: species
Data type double
Data values Positive real number. Default value is 0.
Access Read/Write
Example Add a species with name and value to a model object.

1 Create a model object with named my_model.
modelObj = sbiomodel ('my_model');

2 Add the species object with the name glucose.
speciesObj = addspecies (modelObj, 'glucose');

3 Set the initial amount to 100 and verify.

set (speciesObj, 'InitialAmount',100);
get (speciesObj, 'InitialAmount')

MATLAB returns

ans =

100

See Also addspecies, InitialAmountUnits

6-32

Initial AmountUnits

Purpose Property containing units for species initial amount

Description Indicates the unit definition for the InitialAmount property of a
species object. InitialAmountUnits can be one of the builtin units.
To get a list of the defined units use the sbioshowunits function. If
InitialAmountUnits changes from one unit definition to another, the
InitialAmount does not automatically convert to the new units. The
sbioconvertunits function does this conversion. To add a user-defined
unit to the list see sbioregisterunit.

Characteristics
Applies to object: species
Data type char string
Data values unit from Units list; Default = ' ' (None)
Access Read/Write
Example 1 Create a model object named my_model.

modelObj = sbiomodel ('my_model');
2 Add a species object with the name glucose.
speciesObj = addspecies (modelObj, 'glucose');

3 Set the initial amount to 100, InitialAmountUnits to molecule,
and verify.

set (speciesObj, 'InitialAmount’',100,

"InitialAmountUnits', 'molecule');
get (speciesObj,'InitialAmountUnits’)

MATLAB returns

ans =

6-33

Initial AmountUnits

molecule

See Also InitialAmount, sbioshowunits, sbioconvertunits,
sbioregisterunit

6-34

KineticLaw

Purpose Property showing kinetic law for ReactionRate

Description KineticLaw defines the kinetics used to determine the reaction rate
that is specified in the ReactionRate property of the reaction object.
This property shows the kinetic law used to define ReactionRate.

KineticLaw can be configured with the addkineticlaw method.
The addkineticlaw function configures the ReactionRate based
on the KineticLaw and the species and parameters specified in
the kinetic law object properties SpeciesVariableNames and
ParameterVariableNames. SpeciesVariableNames are determined
automatically for mass action kinetics.

If the reaction is updated, the ReactionRate is automatically
updated only for mass action kinetics. For all other kinetics the
SpeciesVariableNames property of the kinetic law object should be

reconfigured.
Characteristics
Applies to Object: reaction
Data type Kinetic law object
Data values Kinetic law object. Default is empty ([]).
Access Read-only
Example Example with Henri-Michaelis-Menten kinetics

1 Create a model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b -> c + d');

2 Define a kinetic law for the reaction object

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

6-35

KineticLaw

3 Verify that the KineticLaw property for the reaction object is
Henri-Michaelis-Menten

get (reactionObj, 'KineticLaw')
MATLAB returns

Kinetic Law Object Array

Index: KineticLawName:
1 Henri-Michaelis-Menten
See Also KineticLawName, Parameters, ParameterVariableNames,

ReactionRate, SpeciesVariableNames

6-36

KineticLawName

Pu rpose Property showing name of abstract kinetic law

Description Indicates the name of the abstract kinetic law in the kinetic law object.
KineticLawName can be any valid name from the builtin or user-defined
abstract kinetic law library. See “Abstract Kinetic Law” on page 6-27
for a definition and more information.

You can find the KineticLawName list in the abstract kinetic

law library by using the command sbiowhos -kineticlaw
(sbiowhos). You can create an abstract kinetic law with the
function sbioabstractkineticlaw and add it to the library using

sbioaddtolibrary.
Characteristics
Applies to Object: kineticlaw
Data type char string
Data values char string defined by abstract
kinetic law
Access Read-only
Examples 1 Create a model object, add a reaction object, and define a kinetic

law for the reaction object.

modelObj = sbiomodel ('my_model');

reactionObj = addreaction (modelObj, 'a + b ->c + d');

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');
2 Verify KineticLawName of kineticlawObj

get (kineticlawObj, 'KineticLawName')

MATLAB returns

ans =

Henri-Michaelis-Menten

6-37

KineticLawName

See Also Abstract kinetic law object and kinetic law object properties:Expression,
SpeciesVariables, ParameterVariables

Kinetic law object properties: SpeciesVariableNames,
ParameterVariableNames, , sbioaddtolibrary, sbiowhos

6-38

LogDecimation

Pu rpose Property to specify recorded simulation output frequency

Description LogDecimation defines how often the simulation data is recorded as
output. It is a property of the SolverOptions object. SolverOptions is
a property of the configset object. LogDecimation is available for ssa,
expltau, and inmpltau solvers.

Use LogDecimation to specify how frequently you want to record the
output of the simulation. For example, if the LogDecimation is set

to 1, for the command (t,x) = sbiosimulate(modelObj), at each
simulation step the time will be logged in t and the quantity of each
logged species will be logged as a row in x. If LogDecimation is 10, then
every 10th simulation step will be logged in t and x.

Characteristics
Applies to Object: SolverOptions
Data type int
Data values >0 default is 1.
Access Read/Write
Example Shows how to change LogDecimation settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to expltau

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)
set(configsetObj, 'SolverType', 'expltau')

2 Change the LogDecimation to 10.

set(configsetObj.SolverOptions, 'LogDecimation', 10)
get(configsetObj.SolverOptions, 'LogDecimation')

6-39

LogDecimation

ans =

10

See Also ErrorTolerance, RandomState

6-40

Maxlterations

Purpose Property to specify nonlinear solver maximum iterations in implicit tau

Description MaxIterations specifies the maximum number of iterations for the
nonlinear solver in impltau. It is a property of the SolverOptions
object. SolverOptions is a property of the configset object.

The implicit tau solver in SimBiology internally uses a nonlinear solver
to solve a set of algebraic nonlinear equations at every simulation step.
Starting with an initial guess at the solution, the nonlinear solver
iteratively tries to find the solution to the algebraic equations. The
closer the initial guess is to the solution, the fewer the iterations the
nonlinear solver will take before it finds a solution. MaxIterations
specifies the maximum number of iterations the nonlinear solver should
take before it issues a “failed to converge” error. If you get this error,
during simulation try increasing MaxIterations. The default value of
MaxIterations is 15.

Characteristics
Applies to Object: SolverOptions
Data type int
Data values >0 default is 15.
Access Read/Write
Example Shows how to change MaxIterations settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to impltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)
set(configsetObj, 'SolverType', 'impltau')

2 Change the MaxIterations to 25.

set(configsetObj.SolverOptions, 'MaxIterations', 25)
get(configsetObj.SolverOptions, 'MaxIterations')

6-41

Maxlterations

ans =

25

See Also ErrorTolerance, LogDecimation, RandomState

6-42

Models

Purpose Property showing all model objects

Description Indicates the models in a Model object or in the SimBiology root.
Read-only array of Model objects. SimBiology has a hierarchical
organization. A top-level model object has the SimBiology root as
its Parent. Model objects with another model object as Parent are
submodels. For a model object to access configset, kinetic law, reaction,
rule and species objects, you must assign the model object as Parent
in these objects. Parameter objects can have a model object or kinetic
law object as Parent. You can display all the component objects with
modelObj .Models or get (modelObj, 'Models').

The components of a submodel are contained within the submodel. In
addition, a submodel object can reference parameter variables that have
been assigned to the model object. For example, a parameter defined
within a submodel cannot be used by the parent model or another model
object. A submodel object however, can use the parameters assigned

to the model object.

You can add a submodel to a model object with the method addmodel
and removed from its parent with the method delete.

Characteristics
Applies to Objects: model, root
Data type Array of model objects
Data values Model object, Default is empty ([]).
Access Read-only
Example 1 Create a model object

modelObj = sbiomodel ('cell');

2 Add submodels to model object and verify

submodelObj1
submodelObj2

addmodel (modelObj, 'nucleus');
addmodel (modelObj, 'mitochondrion');

6-43

Models

6-44

get (modelObj, 'Models')

MATLAB returns

SimBiology Model Object Array

Index: Name:

1 nucleus

2 mitochondrion
See Also sbiomodel, addmodel

Name

Purpose

Description

Property with name of object

Identifies a SimBiology object. Species, parameter, and model objects
can be referenced by other objects using the object property Name,
therefore Name must be unique for these objects.

Use the function sbioselect to find an object with the same Name
property value.

There are reserved characters that cannot be used in object names:

® Models cannot have an empty in Name.

® Species names cannot be empty and note the following reserved
words, characters and constraints:

= The literal words null and time. Note that you can specify species
names with these words contained within the name. For example
nullaminoacids, or nullnucleotides.

= The characters i, j, -> <>,[, and].

= If you are using a species name that is not a valid MATLAB
variable name, do the following:

» Enclose the name in square brackets when writing a reaction
rate equation or a rule.

e Enter the name without brackets when you are creating the
species or when you are adding the reaction.

For example, enclose [DNA polymerase+] within brackets
in reaction rates and rules; enter DNA polymerase+ when
specifying the name of the species or while writing the reaction.

= The literal words null and time. Note that you could specify
species names with these words contained within the name. For
example nullaminoacids, or nullnucleotides .

= The characters i, j, -> <>,[, and].

® Parameters cannot have an empty in Name or have the name time.

6-45

Name

Characteristics
Applies to Objects: kineticlaw, model, parameter, reaction,
rule, species
Data type char string
Data values Any char string except reserved words and
characters.
Access Read/Write
Example 1 Create a model object with the name my model.
modelObj = sbiomodel ('my_model');
2 Add a reaction object to the model object
reactionObj = addreaction(modelObj, 'Aspartic acid -> beta-Aspartyl-P04')
MATLAB returns
Reaction Object Array
Index: Reaction:
1 Aspartic acid -> beta-Aspartyl-P04
3 Set reaction Name and verify
set (reactionObj, 'Name', 'Aspartate kinase reaction');
get (reactionObj, 'Name')
MATLAB returns
ans =
Aspartate kinase reaction
See Also sbiomodel, addkineticlaw, addparameter, addreaction, addrule,

addspecies

6-46

Notes

Pu rpose Property with HTML text describing SimBiology object
Description Contains user-specified comments about a SimBiology object.
Characteristics

Applies to objects: kinetic law, model, parameter, reaction,

rule, species

Data type char string

Data values Any char string

Access Read/Write
Example 1 Create a model object.

modelObj = sbiomodel ('my_model');
2 Write notes for the model object.

set (modelObj, 'notes', '09/01/05 experimental data')

3 Verify the assignment

get (modelObj, 'notes')

MATLAB returns
ans =

09/01/05 experimental data

See Also sbiomodel, sbioparameter, sbioreaction, sbiorule, shiospecies

6-47

Parameters

Pu rpose Property with array of parameter objects

Description Indicates the parameters in a Model, or KineticLaw object. Read-only
array of Parameter objects. Display with modelObj.Parameters or
get(modelObj, 'Parameters').

The scope of a parameter object is hierarchical and is defined by the
parameter’s parent. If a parameter is defined with a kinetic law object
as its parent, then only the kinetic law object can use the parameter.
If a parameter object is defined with a model object as its parent, then
all components within the model (including all rules, submodels and
kinetic laws (reaction rate equations) can use the parameter.

You can add a parameter to a model object, or kinetic law object with
the method addparameter and delete it with the method delete.

You can view parameter object properties with the get command and
configure properties with the set command.

Characteristics
Applies to Objects: model, kineticlaw
Data type array of parameter objects
Data values Parameter objects; Default value is empty ([]).
Access Read-only
Example 1 Create a model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionobj = addreaction (modelObj, 'a + b ->c + d');

2 Define a kinetic law for the reaction object

kineticlawObj = addkineticlaw(REACTIONobj, 'MassAction');

3 Add a parameter and assign it to the kinetic law object
(kineticlawObj);

6-48

Parameters

parameterObj1 = addparameter (kineticlawObj, 'K1');
get (kineticlawObj, 'Parameters')

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K1 1

4 Add a parameter and assign it to the model object (modelObj);

parameterObji1 = addparameter (modelObj, 'K2');

get (modelObj, 'Parameters')

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K2 1
See Also addparameter, delete, sbioparameter

MATLAB functions get and set

6-49

ParameterVariableNames

6-50

Purpose

Description

Characteristics

Example

Property showing cell array of reaction rate parameters

ParameterVariableNames shows the parameters used by the kinetic
law object to determine the ReactionRate equation in the reaction
object. Use setparameter to assign ParameterVariableNames. When
you assign species to ParameterVariableNames, SimBiology maps these
parameter names to ParameterVariables in the kinetic law object.

If the reaction is using a kinetic law the ReactionRate property

of a reaction object shows the result of a mapping from an abstract
kinetic law. The ReactionRate is determined by the kinetic law
object Expression property by mapping ParameterVariableNames to
ParameterVariables and SpeciesVariableNames to SpeciesVariables.

Applies to Object: kineticlaw
Data type Cell array of strings
Data values Cell array of parameters
Access Read/Write

Create a model, add a reaction, and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of type
'Henri-Michaelis-Menten'

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

ParameterVariableNames

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vm and Km) that should to be set. To set these variables,

setparameter(kineticlawObj,'Vm', 'Va');
setparameter(kineticlawObj, 'Km', 'Ka');

4 Verify that the parameter variables are correct.

get (kineticlawObj, 'ParameterVariableNames')

MATLAB returns
ans =
'Va' 'Ka'

See Also Reaction object property: ReactionRate,

Abstract kinetic law object and kinetic law object properties:
Expression,SpeciesVariables, ParameterVariables

Kinetic law object property: SpeciesVariableNames

Method: setparameter.

6-51

ParameterVariables

6-52

Purpose

Description

Characteristics

Example

Property showing parameters in abstract kinetic law

Description

Indicates the parameter variables that are used in the Expression
property of the abstract kinetic law object. Used to determine the
ReactionRate equation in the reaction object. Use the MATLAB
function set to assign ParameterVariables to an abstract kinetic law.
For more information see abstract kinetic law.

Applies to Objects: abstract kinetic law,
kineticlaw

Data type Cell array of strings

Data values Defined by abstract kinetic law

Access Read/Write in abstract kinetic

law. Read-only in kinetic law.

Create a model, add a reaction and assign the SpeciesVariableNames
for the reaction rate equation.

1 Create a model object, then add a reaction object

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');
reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables.

ParameterVariables

get (kineticlawObj, 'ParameterVariables')

MATLAB returns
ans =

|Vm| |Km|

See Also Reaction object property: ReactionRate

Abstract kinetic law object and kinetic law object properties:
Expression, SpeciesVariables

Kinetic law object properties: SpeciesVariableNames,
ParameterVariableNames.

Method: setparameter
MATLAB function set

6-53

Parent

Pu rpose Property indicating the parent object

Description Indicates the parent object for a SimBiology object (read-only). The
Parent property indicates accessibility of the object. The object is
accessible to the Parent object and other objects within the Parent
object. The value of Parent depends on the type of object and how
it was created.

® The top level model always has the SimBiology root as the Parent

* A model object can have another model object as Parent; this is the
case for submodels.

® Reaction and species objects, are limited to a model object or [] as
Parent.

® Parameter objects, are limited to a model object or a kinetic law
object as Parent.

® Rule object, are limited to a model object or [] as Parent

® An abstract kinetic law object has [] as Parent until it has been
added to the library, then has the SimBiology root as Parent

Characteristics
Applies to Object: abstractkineticlaw, kineticlaw,
model, parameter, reaction, rule, species
Data type Object
Data values SimBiology component object or empty [].
Default value is run-time.
Access Read-only
See Also sbiomodel, addkineticlaw, addmodel, addparameter, addreaction.

6-54

Products

Pu rpose Property to indicate reaction products

Description Array of SimBiology.Species objects.

Products is a 1-by-n species object array that indicates the species that
are changed by the reaction. If the Reaction property is modified to use
a different species, the Products property is updated accordingly.

You can add product species to the reaction with addproduct function.
You can remove product species from the reaction with rmproduct. You
can also update reaction products by setting the Reaction property
with the functionset.

Characteristics
Applies to Object: reaction
Data type Array of objects
Data values Species objects. Default is [].
Access Read-only
Example 1 Create a model object

modelObj = sbiomodel ('my_model');
2 Add reaction objects
reactionObj = addreaction (modelObj, 'a + b ->c + d');
3 Verify assignment.
productsObj = get(reactionObj, 'Products')
MATLAB returns
Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 c 0

6-55

Products

See Also addreaction, addspecies, addproduct, rmproduct

6-56

RandomState

Purpose Property to set random number generator

Description RandomState sets the random number generator for the stochastic
solvers. It is a property of the SolverOptions object. SolverOptions is
a property of the configset object.

SimBiology uses a pseudorandom number generator. The sequence of
numbers generated is determined by the state of the generator, which
can be specified by the integer RandomState. If RandomState is set to
integer J, the random number generator is initialized to its Jt" state.
The random number generator can generate all the floating-point
numbers in the closed interval [2~(-53), 1-2"(-53)]. Theoretically,
it can generate over 2°1492 values before repeating itself. But for a
given state, the sequence of numbers generated will be the same. To
change the sequence, change RandomState. SimBiology resets the state
at startup. The default value of RandomState is [].

Characteristics
Applies to Object: SolverOptions for SSA, expltau,
impltau
Data type int
Data values Default is [].
Access Read/Write
Example Shows how to change RandomState settings.

1 Retrieve the configset object from the modelObj and change the
SolverType to expltau.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)
set(configsetObj, 'SolverType', 'expltau')

2 Change the Randomstate to 5.

set(configsetObj.SolverOptions, 'RandomState', 5)

6-57

RandomState

get(configsetObj.SolverOptions, 'RandomState')

ans =

See Also ErrorTolerance, LogDecimation, MaxIterations

6-58

Reactants

Purpose Property to indicate reaction reactants.

Description Reactants is a 1-by-n species object array with species in the reaction.
If the Reaction property is modified to use a different reactant, the
Reactants property will be updated accordingly.

You can add reactant species to the reaction with the addreactant
method.

You can remove reactant species from the reaction with the rmreactant
method. You can also update reactants by setting the Reaction property
with the function set.

Characteristics
Applies to Objects: reaction
Data type Species object or array of species objects
Data values Species objects, default is []
Access Read-only
Example 1 Create a model object

modelObj = sbiomodel ('my_model');
2 Add reaction objects
reactionObj = addreaction (modelObj, 'a + b -> c + d');
3 View the reactants for reactionObj.
get(reactionObj, 'Reactants')
MATLAB returns
Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 a 0

6-59

Reactants

See Also addreaction, addspecies, addreactant, rmreactant

6-60

Reaction

Pu rpose Property to indicate the reaction object reaction

Description Property to indicate the reaction represented in the reaction object.
Indicates the chemical reaction that can change the amount of one or
more species, for example: 'A + B > C'. This property is different from
the model object property Reactions.

If the Reaction property value is modified, the Species property value
of the reaction object’s parent is updated. If applicable, the Reactant
and/or Product properties of the reaction object are also updated.

For example, if an additional species is added to the reaction, the
species object is added to the model object Species property value.
The species is also added to either the Reactant or Product property
value. If a species is removed from a reaction, the species object is not
removed from the Species property value. However, it is removed from
the Reactant or Product property. The delete function can be used to
remove the species object from the Species property value.

While the following are valid reactions,

A > null
null -> B

reactions that combine species with null are invalid.

A + null -> B
A -> B + null

Note the use of spaces around species names and stoichiometric values.

glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H20

Characteristics
Applies to Object: reaction
Data type char string
Data values Valid reaction string, default is '’
Access Read/Write

6-61

Reaction

Example 1 Create a model object, then add a reaction object.

modelobj = sbiomodel ('my_model');
reactionObj = addreaction (modelobj, 'a + b ->c + d');

2 Verify that the reaction property records the input.
get (reactionObj, 'Reaction')

MATLAB returns
ans =

a+b->c¢c+d

See Also sbioreaction, addreaction

6-62

ReactionRate

Pu rpose Property containing the reaction rate equation in reaction object

Description Defines the reaction rate equation. You can define a ReactionRate
with or without the KineticLaw property. KineticLaw defines the
type of reaction rate. The addkineticlaw function configures the
ReactionRate based on the KineticLaw and the species and parameters
specified in the kinetic law object properties SpeciesVariableNames
and ParameterVariableNames.

The reaction takes place in the reverse direction if the Reversible
property is true. This is reflected in ReactionRate. The ReactionRate
includes the forward and reverse rate if reversible

You can specify ReactionRate without KineticLaw. Use the set
function to specify the reaction rate equation. SimBiology adds species
variables while creating reactionObj using the addreaction method.
You must add the parameter variables (to the modelObj in this case).
See the example below.

Once you have specified the ReactionRate without KineticLaw,

if you later configure the reactionObj to use KineticLaw the
ReactionRate is unset until you specify SpeciesVariableNames and
ParameterVariableNames.

Characteristics
Applies to Object: reaction
Data type char string
Data values Reaction rate string. Default is '’
Access Read/Write
Examples Example 1

Create a model, add a reaction, and assign the expression for the
reaction rate equation.

1 Create a model object, then add a reaction object.

6-63

ReactionRate

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'.

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

reactionObj KineticLaw property is configured to kineticlawObj.

3 The 'Henri-Michaelis-Menten' kinetic law has two parameter
variables (Vmand Km) and one species variable (S) that you should
set. To set these variables, first create the parameter variables as
parameter objects (parameterObj1, parameterObj2) with a names
Vm_d, Km_d and assign them to kineticlawObj.

parameterObj1 = addparameter(kineticlawObj, 'Vm d');
parameterObj2 = addparameter(kineticlawObj, 'Km d');

4 Set the variable names for the kinetic law object.

set(kineticlawObj, 'ParameterVariableNames', {'Vm_d' 'Km_d'});
set(kineticlawObj, 'SpeciesVariableNames', {'a'});

5 Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')
MATLAB returns

ans =

Vm_d*[a]/(Km_d+[a])

Example 2

Create a model, add a reaction, and specify ReactionRate without a
kinetic law.

6-64

ReactionRate

1 Create a model object, then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a + b -> c + d');

2 Specify ReactionRate and verify the assignment.

set (reactionObj, 'ReactionRate', 'k*a');
get(reactionObj, 'ReactionRate')

MATLAB returns
ans =
k*a

3 You cannot simulate the model until you add the parameter k to the
modelObj.

parameterObj = addparameter(modelObj, 'k');

SimBiology adds the parameter to the model0Obj with default Value
= 1.0 for the parameter.

See Also sbioreaction, addreaction, sbioparmeter, addparameter,
Reversible

6-65

Reactions

Pu rpose Property with an array of reaction objects.

Description Property to indicate the reactions in a Model object. Read-only array
of reaction objects.

A reaction object defines a chemical reaction that occurs between
species. The species for the reaction are defined in the Model object
property Species.

You can add a reaction to a model object with the method addreaction
and you can remove a reaction from the model object with the method

delete.
Characteristics
Applies to Objects: model
Data type Array of reaction objects
Data values Reaction object
Access Read-only
Example 1 Create a model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b ->c + d');

2 Verify that the reactions property records the input
get (modelObj, 'Reactions')

MATLAB returns

Reaction Object Array

Index: Reaction:
1 at+tb->c+d
See Also sbioreaction, addreaction, delete

6-66

RelativeTolerance

Purpose Property to specify allowable error relative to component

Description RelativeTolerance specifies the allowable error tolerance relative
to the state vector at each simulation step. The state vector contains
values for all the state variables, for example species amounts for all
the species.

RelativeTolerancet is a property of SolverOptions object.
SolverOptions is a property of the configset object.
RelativeTolerance is available for the ode solvers ('ode45', 'ode23',
'ode113', 'ode15s', 'ode23s', '0de23t"', and 'ode23tb').

If you set the RelativeTolerance at 1e-2 you are specifying that an
error of 1% relative to each state value is acceptable at each simulation
step.

At each simulation step, the solver estimates the local error e; in the i*"
state vector y. Simulation converges at that time step if e, satisfies the
following equation:

| e;| < max(RelativeTolerance* |y;|, AbsoluteTolerance)

Thus at higher state values, convergence is determined by
RelativeTolerance. As the state values approach zero, convergence
is controlled by AbsoluteTolerance The choice of values for
RelativeTolerance and AbsoluteTolerance will vary depending on
the problem. The default values should work for first trials of the
simulation; however if you want to optimize the solution, consider
that there is a trade-off between speed and accuracy. If the simulation
takes too long, you can increase the values of RelativeTolerance and
AbsoluteTolerance at the cost of some accuracy. If the results appear
to be inaccurate, you can decrease the tolerance values but this will
slow down the solver. If the magnitude of the state values is high, you
can try to decrease the relative tolerance to get more accurate results.

6-67

RelativeTolerance

Characteristics
Applies to Object: SolverOptions
Data type double
Data values >0, <1; default is 1e-3.
Access Read/Write
Example Shows how to change AbsoluteTolerance.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Change the AbsoluteTolerance to 1e-8.

set(configsetObj.SolverOptions, 'RelativeTolerance', 1.0e-6)
get(configsetObj.SolverOptions, 'RelativeTolerance')

ans =

1.0000e-006

See Also AbsoluteTolerance

6-68

Reversible

Pu rpose Property to indicate whether a reaction is reversible or irreversible

Description Defines whether a reaction is reversible or irreversible. The rate of
the reaction is defined by the ReactionRate property. For a reversible
reaction the reaction rate equation is the sum of the rate of the
forward and reverse reactions. The type of reaction rate is defined
by the KineticLaw property. If a reaction is changed from reversible
to irreversible or vice versa after KineticLaw is assigned, the new
ReactionRate is determined only if Type is MassAction.. All other
Types result in unchanged ReactionRate. For MassAction the first
parameter specified is assumed to be the rate of the forward reaction.

Characteristics
Applies to Object: reaction
Data type boolean
Data values true, false. Default value is false
Access Read/Write
Example Create a model, add a reaction, and assign the expression for the

reaction rate equation.

1 Create model object, then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Set the Reversible property for the reactionObj to true and verify
this setting.

set (reactionObj, 'Reversible', true)
get (reactionObj, 'Reversible')

MATLAB returns

ans =

6-69

Reversible

6-70

1
MATLAB returns 1 for true and 0 for false.

In the next steps the example illustrates how the reaction rate
equation is assigned for reversible reactions.

Create a kinetic law object for the reaction object, of the type
'MassAction'.

kineticlawObj = addkineticlaw(reactionObj, 'MassAction');

reactionObj KineticLaw property is configured to kineticlawObj.

The 'MassAction' kinetic law for reversible reactions has two
parameter variables ('Forward Rate Parameter' and 'Reverse
Rate Parameter') that you should set. The species variables for
MassAction are automatically determined. To set the parameter
variables, first create the parameter variables as parameter objects
(parameterObji1, parameterObj2) with names Kf, Kr and assign
the object to kineticlawObj.

parameterObj1 addparameter(kineticlawObj, 'Kf');
parameterObj2 = addparameter(kineticlawObj, 'Kr');

Set the variable names for the kinetic law object.

set(kineticlawObj, 'ParameterVariableNames', {'Kf' 'Kr'});

Verify that the reaction rate is expressed correctly in the reaction
object ReactionRate property.

get (reactionObj, 'ReactionRate')
MATLAB returns
ans =

Kf*a*b - Kr*c*d

Reversible

See Also sbioreaction, addreaction, addparameter,
ParameterVariableNames, ReactionRate

6-71

Rule

6-72

Pu rpose Property to define certain species and parameter interactions

Description A rule defines how certain species and parameters should interact with
one another. For example, a rule could state that the total number
of species A and species B must be some value. Rule is a MATLAB
expression that defines the change in the species object quantity or a
parameter object Value when the rule is evaluated.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules see addrule, and RuleType.

Characteristics
Applies to Object: rule
Data type char string
Data values char string defined as species or parameter
objects. Default is empty.
Access Read/write
Example 1 Create a model object, then add a reaction object
modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b ->c + d');
2 Add a rule
ruleObj = addrule(modelObj, '10-a+b"')
MATLAB returns
Rule Object Array
Index: RuleType: Rule:
1 algebraic 10-a+b
See Also addrule, delete, sbiorule

RuleType
|

Pu rpose Property for defining the type of rule for the rule object.

Description RuleType indicates the type of rule defined by the rule object. A Rule
object defines how certain species and parameters should interact with
one another. For example, a rule could state that the total number
of species A and species B must be some value. Rule is a MATLAB
expression that defines the change in the species object quantity or a
parameter object Value when the rule is evaluated.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules see addrule, and sbiorule

The three rule types defined are algebraic, assignment, and rate:

¢ Algebraic — Algebraic rules are evaluated continuously during
a simulation. An algebraic rule takes the form 0 = Expression,
and the rule is specified as the Expression. For example, a mass
conservation expression such as species total = speciest +
species2, where species_total is the independent variable, would
be written as

species1 + species2 - species_total

* Assignment — Assignment rules are evaluated once at the
beginning of a simulation. Assignment rules are expressed as
Variable = Expression. For example write an assignment rule to
set the amount of speciesi to be proportional to species2;

species1 = k/species2
(where k is a known constant with units = concentration~2)

e Rate — Rate rules are evaluated continuously during a simulation.
Rate rules are determined by dvariable/dt = Expression, which is
expressed in SimBiology as Variable = Expression. For example,
write a rate rule to define the rate of change in the quantity of a new
species, species3, using the expression.

dspecies1/dt = k * (speciesl + species?2)

6-73

RuleType

Write the rule in SimBiology as

species3 = k * (speciesl1 + species?2)

Characteristics
Applies to Object: rule
Data type char string
Data values 'algebraic', 'assignment’', 'rate'. Default
value is 'assignment'
Access Read/write
Example 1 Create a model object, then add a reaction object

modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a -> b');

2 Add a rule that specifies the quantity of a species c. In the rule
expression k is the rate constant fora -> b

ruleObj = addrule(modelObj, 'c = k*(a+b)')

3 Change the RuleType from the default ('algebraic')to 'rate'. and
verify using the get command

set(ruleObj, 'RuleType', 'rate');
get(ruleObj)

MATLAB returns all the properties for the rule object

Active: 1
Annotation: "'
Name: ''
Notes: "'
Parent: [1x1 SimBiology.Model]
Rule: 'c = k*(ath)'
RuleType: 'rate’

6-74

RuleType
|

Tag: '
Type: 'rule’
UserData: []
See Also sbiorule, addrule, delete

6-75

Rules

Purpose Property showing rules in model object

Description Indicates the rules in a Model object. Read-only array of
SimBiology.Rule objects.

A rule is a mathematical expression that modifies a species amount or
a parameter value. A rule defines how certain species and parameters
should interact with one another. For example, a rule could state that
the total number of species A and species B must be some value.

You can add a rule to a model object with the addrule method and
remove the rule with the delete method. For more information on
rules see addrule, and RuleType.

Characteristics
Applies to Object: model
Data type Array of rule objects
Data values Rule object
Access Read-only
Example 1 Create a model object, then add a reaction object
modelObj = sbiomodel ('my_model');
reactionObj = addreaction (modelObj, 'a + b ->c + d');
2 Add a rule

ruleobj = addrule(modelObj, '10-a+b')

MATLAB returns

Rule Object Array

Index: RuleType: Rule:
1 algebraic 10-a+b

6-76

Rules

See Also addrule, delete, sbiorule

6-77

RuntimeOptions

Pu rpose Property holding options for logged species

Description RuntimeOptions holds options for species that will be logged during the
simulation run. The runtime options object can be accessed through
this property.

The LogDecimation property of the configuration set object defines
how often data is logged.

Property
Summqry StatesToLog Property to specify species data
recorded
Type Property to indicate SimBiology
object type
Characteristics
Applies to Object: configset
Data type Object
Data values Run time options
Access Read-only
Example 1 Create a model object and retrieve its configuration set.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj);

2 Retrieve the RuntimeOptions object from the configset object.

runtimeObj = get(configsetObj, 'RunTimeOptions')

Runtime Settings:

StatesTolLog: all

6-78

RuntimeOptions

See Also MATLAB functions get, set

6-79

SolverOptions

Pu rpose Property holding the model solver options

Description SolverOptions is an object that holds the model solver options in the
configset object. Changing the property SolverType changes the
options specified in the SolverOptions object.

Properties of SolverOptions are summarized in the property summary
on this page.

Property
Summqry AbsoluteTolerance Property to specify largest
allowable absolute error
ErrorTolerance Property specifies explicit or
implicit tau error tolerance
LogDecimation Property to specify recorded
simulation output frequency
MaxIterations Property to specify nonlinear
solver maximum iterations in
implicit tau
RandomState Property to set random number
generator
RelativeTolerance Property to specify allowable
error relative to component
Type Property to indicate SimBiology
object type
Characteristics
Applies to Object: configset
Data type Object

6-80

SolverOptions

Data values Solver options depending on SolverType.
Default is SolverOptions for default
SolverType (ode15s).

Access Read-only
Example IMlustrates the changes in SolverOptions for various SolverType
settings.

1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45')
get(configsetObj, 'SolverOptions')
Solver Settings: (ode)

AbsoluteTolerance: 1.000000e-006
RelativeTolerance: 1.000000e-003

3 Configure the SolverType to ssa.

set(cs, 'SolverType', 'ssa')
get(configsetObj, 'SolverOptions')

Solver Settings: (ssa)

LogDecimation: 1
RandomState: []

6-81

SolverOptions

4 Configure the SolverType to impltau.

set(configsetObj, 'SolverType', 'impltau')

get(configsetObj, 'SolverOptions')

Solver Settings: (impltau)

ErrorTolerance: 3.000000e-002
LogDecimation: 1
AbsoluteTolerance: 1.000000e-002
RelativeTolerance: 1.000000e-002
MaxIterations: 15
RandomState: []

5 Configure the SolverType to expltau.

set(configsetObj, 'SolverType', 'expltau')

get(configsetObj, 'SolverOptions')

Solver Settings: (expltau)

ErrorTolerance: 3.000000e-002
LogDecimation: 1
RandomState: []

See Also addconfigset, getconfigset

6-82

SolverType
|

Purpose Property to select solver type for simulation

Description SolverType selects a solver for a simulation. The valid SolverType
values are'ssa’', 'expltau’', 'impltau', 'ode45', '0de23', 'odel113’,
'ode15s', 'ode23s', and 'ode23t'. The default solver is ode15s. For a
discussion about these solver types, see “Selecting a Solver”.

Changing the solver type changes the options (properties) specified in
the SolverOptions property of the configset object. If you change
any SolverOptions these changes are persistent when you switch
SolverType. For example if you set the ErrorTolerance for the
expltau solver and then change to impltau when you switch back to
expltau the ErrorTolerance will have the number you assigned.

Characteristics
Applies to Object: configset
Data type enum
Data values 'ssa', 'expltau', 'impltau', 'ode45',
'ode23', 'ode113"', 'ode15s’', 'ode23s’,
'ode23t', 'ode23tb'. Default is ode15s.
Access Read/Write
Example 1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)

SolverType: ode15s

StopTime: 10.000000
SolverOptions:

AbsoluteTolerance: 1.000000e-006

RelativeTolerance: 1.000000e-003

6-83

SolverType

RuntimeOptions:
StatesTolLog: all
CompileOptions:
UnitConversion: true

DimensionalAnalysis: true

2 Configure the SolverType to ode45.

set(configsetObj, 'SolverType', 'ode45')
configsetObj

Configuration Settings - default (active)

SolverType: ode45

StopTime: 10.000000
SolverOptions:

AbsoluteTolerance: 1.000000e-006

RelativeTolerance: 1.000000e-003
RuntimeOptions:

StatesTolLog: all
CompileOptions:

UnitConversion: true

DimensionalAnalysis: true

See Also getconfigset
MATLAB function set

6-84

Species

Purpose Property showing species in model object

Description Indicates the species in a Model object. Read-only array of SimBiology
species objects.

Species are entities that take part in reactions. A species object is added
to the Species property when a reaction is added to the model object
with the method addreaction. A species object can also be added to the
Species property with the method addspecies.

If you remove a reaction with the method delete, and a species is no
longer being used by any of the remaining reactions, the species object
is not removed from the Species property. You have to use the delete
method to remove species.

There are reserved characters that cannot be used in species object
names:

Species names cannot be empty, and note the following reserved words,

characters and constraints:

® The literal words null and time. Note that you could specify species
names with these words contained within the name. For example
nullaminoacids, or nullnucleotides.

® The characters i, j, -> <>,[, and].

® Ifyou are using a species name that is not a valid MATLAB variable
name, do the following:

= Enclose the name in square brackets when writing a reaction rate
equation or a rule.

Enter the name without brackets when you are creating the
species or when you are adding the reaction.

For example, enclose [DNA polymerase+] within brackets in
reaction rates and rules; enter DNA polymerase+ when specifying
the name of the species or while writing the reaction.

6-85

Species

6-86

Characteristics
Applies to

Data type

Data values

Access

Object: model

Array of species objects

Species object, default is empty []
Read-only

See Also sbiospecies, addreaction, addspecies, delete

SpeciesVariablesNames

Purpose Property showing cell array of species used in reaction rate equation

Description SpeciesVariablesNames shows the species used by the kinetic law
object to determine the ReactionRate equation in the reaction object.
Use setspecies to assign SpeciesVariableNames. When you assign
species to SpeciesVariableNames, SimBiology maps these species
names to SpeciesVariables in the kinetic law object.

The ReactionRate property of a reaction object shows the result
of a mapping from an abstract kinetic law. The ReactionRate
is determined by the kinetic law object Expression property by
mapping ParameterVariableNames to ParameterVariables and
SpeciesVariableNames to SpeciesVariables.

Characteristics
Applies to Object: kinetic law
Data type Cell array of strings
Data values Cell array of species names
Access Read/Write
Example Create a model, add a reaction, and assign the SpeciesVariableNames

for the reaction rate equation.

1 Create a model object, and then add a reaction object.

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');

The reactionObj KineticlLaw property is configured to
kineticlawObj.

6-87

SpeciesVariablesNames

3 The 'Henri-Michaelis-Menten' kinetic law has one species variable
(S) that you should set. To set this variable,

setspecies(kineticlawObj,'S', 'a');
4 Verify that the species variable is correct.
get (kineticlawObj, 'SpeciesVariableNames')
MATLAB returns
ans =
g

See Also Reaction object property: ReactionRate

Abstract kinetic law object and kinetic law object properties:
Expression, SpeciesVariables, ParameterVariables

Kinetic law object property: ParameterVariableNames

Method:setparameter

6-88

SpeciesVariables

Pu rpose Property showing species in abstract kinetic law

Description Property showing species variables that are used in the Expression
property of the kinetic law object to determine the ReactionRate
equation in the reaction object. Use the MATLAB function set to assign
SpeciesVariables to an abstract kinetic law. For more information see
abstract kinetic law.

Characteristics
Applies to Objects: abstract kinetic law,
kineticlaw
Data type Cell array of strings
Data values Defined by abstract kinetic law
Access Read/Write in abstract kinetic
law. Read-only in kinetic law.
Example Create a model, add a reaction, and assign the SpeciesVariableNames

for the reaction rate equation.

1 Create a model object, then add a reaction object

modelObj = sbiomodel('my_model');
reactionObj = addreaction(modelObj, 'a -> ¢c + d');

2 Create a kinetic law object for the reaction object, of the type
'Henri-Michaelis-Menten'

kineticlawObj = addkineticlaw(reactionObj, 'Henri-Michaelis-Menten');
reactionObj KineticLaw property is configured to kineticlawObj.
3 View the species variable for 'Henri-Michaelis-Menten' kinetic law.

get (kineticlawObj, 'SpeciesVariables')

MATLAB returns

6-89

SpeciesVariables

6-90

See Also

ans =
ISI

Reaction object property: ReactionRate

Abstract kinetic law object and kinetic law object properties:
Expression, SpeciesVariables

Kinetic law object property: ParameterVariableNames.
Method: setparameter
MATLAB function set

StatesTolog
|

Purpose Property to specify species data recorded

Description StatesTolLog indicates the species data to log during a simulation.
This is the data returned in x during execution of (t,x) =
sbiosimulate(modelObj). By default all species are logged.

Characteristics
Applies to Object: RunTimeOptions
Data type Object or vector of objects
Data values Species objects to log. Default is A11.
Access Read/Write
Example IMlustrates how to assign species to StatesTolLog.

1 Create a model object by importing the file oscillator.xml.

modelObj = sbmlimport('oscillator');

2 Retrieve the first and second species in the modelObj.

speciesObj1 modelObj.Species(1);
speciesObj2 = modelObj.Species(2);

3 Retrieve the configsetObj of modelObj.

configsetObj = getconfigset(modelObj);

4 Set the StatesToLog to record three species; two using the retrieved
species objects and one using indexing and view the species in
StatesTolLog.

set (configsetObj.RuntimeOptions, 'StatesTolLog',

[speciesObj1, speciesObj2, modelObj.Species(3)]);
get(configsetObj.RuntimeOptions, 'StatesTolLog')

6-91

StatesTolLog
|

Species Object Array

Index: Name: InitialAmount: InitialAmountUnits:
1 PA 100

2 pB 0

3 pC 0

6-92

Stoichiometry

Purpose

Description

Characteristics

Property that describes species coefficients in a reaction

Specifies the species coefficients in a reaction. Enter an array of
doubles indicating the stoichiometry of reactants (negative value) and
products (positive value). Example: [-1 -1 2].

The double specified cannot be 0. The reactants of the reaction are
defined with a negative number. The products of the reaction are
defined with a positive number. For example, the reaction 3H + A->2C
+ F has the Stoichiometry value of [-3 -1 2 1].

When this property is configured the Reaction property updates
accordingly. In the above example, if the Stoichiometry value was set
to [-2 -1 2 3], the Reaction is updated to 2H + A -> 2C + 3F.

The length of the Stoichiometry array is the sum of the Reactants
array and the Products array. To remove a product or reactant from
a reaction use the rmproduct or rmreactant functions. Add a product
or reactant and set stoichiometry with methods addproduct and
addreactant

ODE solvers support double stoichiometry values such as 0.5.
Stochastic solvers and dimensional analysis currently only support
integers in Stoichiometry, therefore you must balance the reaction
equation and specify integer values for these two cases.

A -> null has a stoichiometry value of [-1]. null -> Bhas a
stoichiometry value of [1].

Applies to Object: reaction

Data type Double array

Data values 1-by-n double, where n is length (products) +
length (reactants). Default [] (empty)

Access Read/Write

6-93

Stoichiometry

Example 1 Create a reaction object

reactionObj = sbioreaction('2 a + 3 b ->d + 2 ¢');

2 Verify the Reaction and Stoichiometry properties for reactionObj.
get(reactionObj, 'Stoichiometry')

MATLAB returns

ans =
-2 -3 1 2

3 Set stoichiometry to [-1 -2 2 2].

set (reactionObj, 'Stoichiometry', [-1 -2 2 2]);
get (reactionObj, 'Stoichiometry')

MATLAB returns
ans =
-1 -2 2 2
4 Note with get that the Reaction property updates automatically.
get (reactionObj, 'Reaction')
MATLAB returns
ans =

a+2b->2d+2c¢c

See Also sbioreaction, addreaction, addproduct, addreactant, Reaction
, rmproduct, rmreactant

6-94

StopTime
|

Purpose Property to set the stop time for a simulation
Description StopTime sets the stop time for a simulation. The type of StopTime is
specified in the property StopTimeType.
Characteristics
Applies to Object: configset
Data type double
Data values Enter a positive number. Default is 10.
Access Read/Write
Example 1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

2 Configure the StopTime to 20.

set(configsetObj, 'StopTime', 20)
get(configsetObj, 'StopTime')

ans =

20

See Also StopTimeType, TimeUnits

6-95

StopTimeType

Pu rpose Property to specify the type of stop time for a simulation

Description StopTimeType sets the type of stop time for a simulation. The stop time
is specified in the StopTime property of the configset object. Valid
types are approxWallTime, numberOfLogs, and simulationTime. The
default is simulationTime.

® simulationTime- specify the stop time for the simulation. The solver
determines and sets the time steps and the simulation stops when it
reaches the specified StopTime.

® approxWallTime- specify the approximate stop time according to the
clock. For example,10s of approxWallTime is approximately 10s
of real time.

* numberOfLogs— specify the total number of simulation steps to be
recorded during the simulation. For example if you want to log three
simulation steps, the numberOfLogs is 3. The simulation will stop
after the specified number0OfLogs.

You can change the StopTimeType setting with the set function.

Characteristics
Applies to Object: configset
Data type enum
Data values approxWallTime, numberOfLogs, and
simulationTime
Access Read/Write
Example 1 Retrieve the configset object from the modelObj.

modelObj = sbiomodel('cell');
configsetObj = getconfigset(modelObj)

6-96

StopTimeType
|

2 Configure the StopTimeType to approxWallTime.

set(configsetObj, 'StopTimeType', 'approxWallTime')
get(configsetObj, 'StopTimeType')

ans =

approxWallTime

See Also StopTime, StatesToLog, TimeUnits
MATLAB function set

6-97

Tag

Purpose Property to specify a label for a SimBiology object

Description Specifies a label associated with a SimBiology object. Use this
property to group objects and then use sbioselect to retrieve. For
example, use the Tag property in reaction objects to group synthesis or
degradation reactions. You can then retrieve all synthesis reactions
using sbioselect. Similarly, for species objects you can enter and
store classification information. For example, membrane protein,
transcription factor, enzyme classifications, or whether a species is an
independent variable. You can also enter the full form of the name
of the species. This is useful when viewing the model in the Block
Diagram Explorer. For example, the species object Name could be
G6P for convenience, but in the Tag you should enter the full name,
Glucose-6phosphate. The graphical representation of the model in the
Block Diagram Explorer (available in sbiodesktop) can be sorted by
the Tag field, and this feature provides a method to view the full name.

Characteristics
Applies to Objects: abstract kinetic law, kinetic law, model,
parameter, reaction, rule, species
Data type char string
Data values Any char string
Access Read/Write
Example 1 Create a model object.

modelObj = sbiomodel ('my_model');
2 Add reaction object and set Tag property to 'Synthesis Reaction'.

reactionObj = addreaction (modelObj, 'a + b ->c + d');
set (reactionObj, 'Tag', 'Synthesis Reaction')

3 Verify Tag assignment.

get (reactionObj, 'Tag');

6-98

Tag

See Also

MATLAB returns
ans =

'Synthesis Reaction'

sbiomodel, sbioabstractkineticlaw, sbioparameter, sbioreaction,
sbioroot, sbiorule, shiospecies

6-99

TimeUnits

Purpose Property to show the stop time units for a simulation
Description TimeUnits shows units for the stop time for a simulation. The type of
StopTime is specified in the property StopTimeType. Unit is seconds.
Characteristics
Applies to Object: configset
Data type string
Data values Default value is second.
Access Read-only
See Also StopTimeType, StopTime

6-100

Type

Purpose Property to indicate SimBiology object type

Description Indicates a SimBiology object type. When you create an object in
SimBiology, the value of Type is automatically defined.

For example, when a Species object is created, the value of Type is
automatically defined as 'species'.

Characteristics
Applies to Objects: abstract kinetic law, configuration
set, CompileOptions, kinetic law, model,
parameter, reaction, root, rule, species,
RuntimeOptions, SolverOptions.
Data type char string
Data values abstract _kinetic_law, configset,
compileoptions, kineticlaw, parameter,
reaction, root, rule, runtimeoptions,
sbiomodel, species, solveroptions.
Access Read-only
See Also sbiomodel, sbioabstractkineticlaw, sbioparameter, sbioreaction,

sbioroot, sbiorule, shiospecies

6-101

UnitConversion

Pu rpose Property to indicate whether to perform unit conversion.

Description UnitConversion specifies whether to perform unit conversion for the
model before simulation. It is a property of the CompileOptions object.
CompileOptions holds the model’s compile time options and is the
object property of the configset object.

When UnitConversion is set to true, SimBiology converts the matching
physical quantities to one consistent unit system in order to resolve
them. This conversion is in preparation for correct simulation, but
species amounts are returned in the user-specified units.

For example, consider a reaction a + b > c. Using mass action kinetics
the reaction rate is defined as a*b*k where k is the rate constant

of the reaction. If you specify that initial amounts of a and b are
0.01M and 0.005M respectively, then units of k are 1/ (M*second). If
you specify k with another equivalent unit definition, for example,
1/((molecules/liter)*second), UnitConversion occurs after

DimensionalAnalysis.
If UnitConversion fails, then you see an error when you simulate
(sbiosimulate).
If unitConversion is set to false, SimBiology uses the given object
values.
Characteristics
Applies to Object: CompileOptions (in configset
object)
Data type boolean
Data values true or false. Default value is true.
Access Read/Write
Example Shows how to retrieve and set unitconversion from the default true to

false in the default configuration set in a model object

1 Import a model.

6-102

UnitConversion

modelObj = sbmlimport('oscillator')

SimBiology Model - Oscillator

Model Components:

Models: 0
Parameters: 0
Reactions: 42
Rules: 0
Species: 23

2 Retrieve the configset object of the model object.

configsetObj = getconfigset(modelObj)

Configuration Settings - default (active)

SolverType: ode15s

StopTime: 10.000000
SolverOptions:

AbsoluteTolerance: 1.000000e-006

RelativeTolerance: 1.000000e-003
RuntimeOptions:

StatesTolLog: all
CompileOptions:

UnitConversion: true

DimensionalAnalysis: true
3 Retrieve the CompileOptions object.
optionsObj = get(configsetObj, 'CompileOptions')
Compile Settings:

UnitConversion: true

6-103

UnitConversion

DimensionalAnalysis: true

4 Assign a value of false to UnitConversion.

set(optionsObj, 'UnitConversion' false)

See Also getconfigset, sbiosimulate.
MATLAB functions get and set.

6-104

UserData

Purpose Property to specify data to associate with object

Description Property to specify data that you want to associate with a SimBiology
object. The object does not use this data directly, but you can access it
using the function get or dot notation.

Characteristics
Applies to Objects: abstract kinetic law, kinetic law, model,
parameter, reaction, rule, species
Data type Any
Data values Any. Default is empty
Access Read/Write
See Also sbiomodel, sbioabstractkineticlaw, sbioparameter, sbioreaction,

sbioroot, sbiorule, shiospecies

6-105

UserDefinedKineticLaws

Purpose Property containing user-defined kinetic laws

Description UserDefinedKineticLaws is a SimBiology root object property showing
all user-defined abstract kinetic laws. Use the command sbiowhos
-userdefined -kineticlaw to see the list of user-defined kinetic laws.
You can use user-defined kinetic laws when you use the command
addkineticlaw to create a kinetic law object for a reaction object. Refer
to the kinetic law by name when you create the kinetic law object, for
example:

kineticlawObj = addkineticlaw(reactionObj, 'my_kinetic_law');

You can add, modify, or delete UserDefinedKineticLaws. Create an
abstract kinetic law with the command sbioabstractkineticlaw
and add it to the user-defined kinetic law library with the
command sbioaddtolibrary. sbioaddtolibrary also updates the
UserDefinedKineticLaws property of the root object.

See “Abstract Kinetic Law” on page 6-27 for a definition and more

information.
Characteristics
Applies to Object: root
Data type char string
Data values Valid kinetic laws
Access Read/Write
Examples Example 1

This example shows the current list of user—defined kinetic laws, using
the command sbiowhos .

sbiowhos -userdefined -kineticlaw

Abstract Kinetic Law Object Array

6-106

UserDefinedKineticLaws

Index: Library: Name: Expression:

1 UserDefined AKLA1 S+P-S*P

2 UserDefined AKL2 P+S*k

3 UserDefined AKL3 P-S*k

4 UserDefined AKL4 P*S*k
Example 2

This example shows the current list of user-defined kinetic laws by
accessing the root object.

rootObj = sbioroot;
get(rootObj, 'UserDefinedKineticLaws')

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:

1 UserDefined AKLA1 S+P-S*P

2 UserDefined AKL2 P+S*k

3 UserDefined AKL3 P-S*k

4 UserDefined AKL4 P*S*k
Example 3

This example shows you how to add a user-defined kinetic law and how
it is displayed in UserDefinedKineticLaws.

1 Create an abstract kinetic law.
abstkineticlawObj = sbioabstractkineticlaw('mylawl', '(k1*s)/(k2+k1+s)');
2 Assign the parameter and species variables to the expression.

set (abstkineticlawObj, 'SpeciesVariables', {'s'});
set (abstkineticlawObj, 'ParameterVariables', {'k1', 'k2'});

6-107

UserDefinedKineticLaws

3 Add the new abstract kinetic law to the user-defined library.

sbioaddtolibrary(abstkineticlawObj);

SimBiology adds the abstract kinetic law to the user-defined library.
You can verify this using sbiowhos.

sbiowhos -kineticlaw -userdefined

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/ (k2+k1+s)
Alternatively,

rootObj = sbioroot;
get(rootObj, 'UserDefinedKineticlaws')

Abstract Kinetic Law Object Array

Index: Library: Name: Expression:
1 UserDefined mylaw1 (k1*s)/ (k2+k1+s)
See Also BuiltInKineticLaws, BuiltInUnits, BuiltInUnitPrefixes

MATLAB functions get and set

6-108

UserDefinedUnitPrefixes

Purpose Property containing user-defined unit prefixes

Description UserDefinedUnitPrefixes is a SimBiology root object property
showing all user-defined unit prefixes. You can specify units with
prefixes for species amounts and parameter values, because, SimBiology
enables you to do dimensional analysis and unit conversion during
simulation. The valid units and unit prefixes are either built-in or
user-defined. Use the command sbiowhos -userdefined -unit to
see the list of user-defined units.

You can add, modify, or delete UserDefinedUnitPrefixes. You can
define a unit prefix with the command sbioregisterunitprefix,
which enables you to create the unit and add it to the user-defined
unit prefixes library, and also add it to the UserDefinedUnitPrefixes
property of the root object.

Characteristics
Applies to Object: root
Data type char string
Data values Valid unit prefixes
Access Read/Write
Example This example shows how to create a user-defined unit prefix and access

it through the UserDefinedUnitPrefixes property.
1 Create a unit prefix with a multiplier of 10"-5

(sbioregisterunitprefix requires you to specify the
exponent).

sbioregisterunitprefix('peta', 15);
2 Display the unit prefix, using the command sbiowhos.

sbiowhos -userdefined -unitprefix

SimBiology UserDefined Unit Prefixes

6-109

UserDefinedUnitPrefixes

Index: Name: Multiplier:
1 peta 1.000000e+015

Alternatively, to display only names, use the following commands:

r = sbioroot
r.UserDefinedUnitPrefixes

ans =

'peta’

See Also BuiltInUnitPrefixes, BuiltInUnits, UserDefinedUnits,
UserDefinedKineticLaws

6-110

UserDefinedUnits

Purpose

Description

Characteristics

Example

Property containing user-defined units

UserDefinedUnits is a SimBiology root object property showing all
user-defined units. You can specify units for species amounts and
parameter values, because, SimBiology enables you to do dimensional
analysis and unit conversion during simulation. The valid units

are either built-in or user-defined. Use the command sbiowhos
-userdefined -unit to see the list of user-defined units.

You can add, modify, or delete UserDefinedUnits. You can define a unit
with the command shioregisterunit, which enables you to create the
unit and add it to the user-defined units library, and also add it to the
UserDefinedUnits property of the root object.

Applies to Object: root
Data type char string
Data values Valid units
Access Read/Write

This example shows how to create a user-defined unit and access it
through the UserDefinedUnits property.

1 Create units for the rate constants of a first order and a second order
reaction.

sbioregisterunit('firstorderconstant', '1/second', 1);
sbioregisterunit('secondorderconstant', '1/molecule*second', 1);

2 Display the unit, using the command sbiowhos.

sbiowhos -userdefined -unit

SimBiology UserDefined Units

6-111

UserDefinedUnits

Index: Name: Composition: Multiplier:
1 [1x18 char] 1/second 1.000000
2 [1x19 char] 1/molecule*second 1.000000

Alternatively, to display only names, use the following commands:

r = sbhioroot
r.UserDefinedUnits

ans =
'secondorderconstant'
'firstorderconstant'

See Also BuiltInUnitPrefixes, BuiltInUnits, UserDefinedUnitPrefixes,

UserDefinedKineticLaws

6-112

Offset:
0.000000
0.000000

Value

Purpose Property to assign value to parameter object

Description The property Value is the value of the parameter object. The parameter
object defines an assignment that can be used by the model object
and/or the kinetic law object. Create parameters and assign Value
using the method addparameter.

Characteristics
Applies to Object: parameter
Data type double
Data values Any double. Default value is 1.0.
Access Read/Write
Example Assign a parameter with value to the model object

1 Create a model object, then add a reaction object
modelObj = sbiomodel ('my_model');

2 Add a parameter to the model object (model0bj) with Value 0.5.
parameterObj1 = addparameter (modelObj, 'K1', 0.5)

MATLAB returns

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K2 0.5
See Also addparameter, sbioparameter

6-113

ValueUnits

Pu rpose Property with parameter value units

Description Indicates the unit definition of the parameter object Value property.
ValueUnits can be one of the builtin units. To get a list of the builtin
units use the sbioshowunits function. If ValueUnits changes from one
unit definition to another, the Value does not automatically convert to
the new units. The sbioconvertunits function does this conversion.

You can add a parameter object to a model object or a kinetic law object.

Characteristics
Applies to Object: parameter
Data type char string
Data values Unit from units library, default is empty '
Access Read/Write
Example Assign a parameter with value to the model object.

1 Create a model object, then add a reaction object.

modelObj = sbiomodel('my_model');

2 Add a parameter with Value 0.5 , assign it to the model object
(modelObj).

parameterObj1 = addparameter(modelObj, 'K1', 0.5, 'ValueUnits', 1/second)

MATLAB returns

Parameter Object Array

Index: Name: Value: ValueUnits:
1 K4 0.5 1/second
See Also addparameter, sbioparameter, sbioshowunits, sbioconvertunits

6-114

A

AbsoluteTolerance property

reference 6-2
Active property
reference 6-4
addconfigset method
reference 4-2
addkineticlaw method
reference 4-5
addmodel method
reference 4-13
addparameter method
reference 4-15
addproduct method
reference 4-20
addreactant method
reference 4-23
addreaction method
reference 4-26
addrule method
reference 4-32
addspecies method
reference 4-36
Annotation property
reference 6-6

BoundaryCondition property

reference 6-7

BuiltInKineticLaws property

reference 6-10

BuiltInUnitPrefixes property

reference 6-12
BuiltInUnits property
reference 6-14

C

CompileOptions property

reference 6-16
ConstantAmount property

reference 6-18
ConstantValue property

reference 6-20
copyobj method

reference 4-41

D

delete method
reference 4-43
DimensionalAnalysis property
reference 6-22
display method
reference 4-45

ErrorTolerance property
reference 6-25

Expression property
reference 6-27

F

functions
sbioabstractkineticlaw 4-64
sbioaddtolibrary 2-2
sbioconvertunits 2-4
sbiocopylibrary 2-6
sbiodesktop 2-8
sbiogetmodel 2-10
sbiogetnamedstate 2-12
sbiohelp 2-14
sbioloadproject 2-15
sbiomodel 4-68
sbioparameter 4-72
sbioreaction 4-76
sbioregisterunit 2-16
sbioregisterunitprefix 2-18

Index-1

Index

sbioremovefromlibrary 2-19 K

sbioreset 2-21 KineticLaw property
sb¥oroot 4-81 reference 6-35
Sb}orule 4-84 KineticLawName property
sbiosaveproject 2-24 reference 6-37

sbioselect 2-25
sbioshowunitprefixes 2-29

sbioshowunits 2-30 L
sbiosimulate 2-32 LogDecimation property
sbiospecies 4-87 reference 6-39
sbiounitcalculator 2-36
sbiounregisterunit 2-37 M
sbiounregisterunitprefix 2-39
sbiowhos 2-40 MaxIterations property
sbmlexport 2-44 reference 6-41
sbmlimport 2-42 methods
setactiveconfigset 4-91 addconfigset 4-2
setparameter 4-93 addkineticlaw 4-5
setspecies 4-95 addmodel 4-13
addparameter 4-15
G addproduct 4-20
addreactant 4-23
getadjacencymatrix method addreaction 4-26
reference 4-46 addrule 4-32
getconfigset method addspecies 4-36
reference 4-48 copyobj 4-41
getparameters method delete 4-43
reference 4-50 getadjacencymatrix 4-46
getspecies method getconfigset 4-48
reference 4-52 getparameters 4-50
getstoichmatrix method getspecies 4-52
reference 4-54 getstoichmatrix 4-54
removeconfigset 4-60
I reset 4-62
o rmproduct 4-56
InitialAmount property rmreactant 4-58
. .reference 6-3? Methods
InitialAmountUnits property display 4-45
reference 6-33 Models property

reference 6-43

Index-2

Index

Name property
reference 6-45

Notes property
reference 6-47

P

Parameters property
reference 6-48

ParameterVariableNames property
reference 6-50

ParameterVariables property
reference 6-52

Parent property
reference 6-54

Products property
reference 6-55

properties
AbsoluteTolerance 6-2
Active 6-4
Annotation 6-6
BoundaryCondition 6-7
BuiltInKineticLaws 6-10
BuiltInUnitPrefixes 6-12
BuiltInUnits 6-14
CompileOptions 6-16
ConstantAmount 6-18
ConstantValue 6-20
DimensionalAnalysis 6-22
ErrorTolerance 6-25
Expression 6-27
InitialAmount 6-32
InitialAmountUnits 6-33
KineticLaw 6-35
KineticLawName 6-37
LogDecimation 6-39
MaxIterations 6-41
Models 6-43

Name 6-45
Notes 6-47
Parameters 6-48

ParameterVariableNames 6-50

ParameterVariables 6-52
Parent 6-54

Products 6-55
RandomState 6-57
Reaction 6-61
ReactionRate 6-63
Reactions 6-66
RelativeTolerance 6-67
Reversible 6-69

Rule 6-72

Rules 6-76

RuleType 6-73
RuntimeOptions 6-78
SolverOptions 6-80
SolverType 6-83
Species 6-85
SpeciesVariables 6-89

SpeciesVariablesNames 6-87

StatesToLog 6-91
Stoichiometry 6-93
StopTime 6-95
StopTimeType 6-96
Tag 6-98

TimeUnits 6-100
Type 6-101
UnitConversion 6-102
UserData 6-105

UserDefinedKineticLaws 6-106
UserDefinedUnitPrefixes 6-109

UserDefinedUnits 6-111
Value 6-113
ValueUnits 6-114

Properties

Reactants 6-59

Index-3

Index

RandomState property
reference 6-57
Reactants property
reference 6-59
Reaction property
reference 6-61
ReactionRate property
reference 6-63
Reactions property
reference 6-66
RelativeTolerance property
reference 6-67
removeconfigset method
reference 4-60
reset method
reference 4-62
Reversible property
reference 6-69
rmproduct method
reference 4-56
rmreactant method
reference 4-58
Rule property
reference 6-72
Rules property
reference 6-76
RuleType property
reference 6-73
RuntimeOptions property
reference 6-78

S

sbioabstractkineticlaw function

reference 4-64
sbioaddtolibrary function

reference 2-2
sbioconvertunits function

reference 2-4

Index-4

sbiocopylibrary function
reference 2-6
sbiodesktop function
reference 2-8
sbiogetmodel function
reference 2-10
sbiogetnamedstate function
reference 2-12
sbiohelp function
reference 2-14
sbioloadproject function
reference 2-15
sbiomodel function
reference 4-68
sbioparameter function
reference 4-72
sbioreaction function
reference 4-76
sbioregisterunit function
reference 2-16
sbioregisterunitprefix function
reference 2-18
sbioremovefromlibrary function
reference 2-19
sbioreset function
reference 2-21
sbioroot function
reference 4-81
sbiorule function
reference 4-84
sbiosaveproject function
reference 2-24
sbioselect function
reference 2-25
sbioshowunitprefixes function
reference 2-29
sbioshowunits function
reference 2-30
sbiosimulate function
reference 2-32

Index

sbiospecies function
reference 4-87
sbiounitcalculator function
reference 2-36
sbiounregisterunit function
reference 2-37
sbiounregisterunitprefix function
reference 2-39
sbiowhos function
reference 2-40
sbmlexport function
reference 2-44
sbmlimport function
reference 2-42
setactiveconfigset function
reference 4-91
setparameter function
reference 4-93
setspecies function
reference 4-95
SolverOptions property
reference 6-80
SolverType property
reference 6-83
species object
method summary 4-88
property summary 4-88
Species property
reference 6-85
SpeciesVariables property
reference 6-89
SpeciesVariablesNames property
reference 6-87
StatesToLog property
reference 6-91

Stoichiometry property
reference 6-93

StopTime property
reference 6-95

StopTimeType property
reference 6-96

T

Tag property
reference 6-98

TimeUnits property
reference 6-100

Type property
reference 6-101

U

UnitConversion property
reference 6-102
UserData property
reference 6-105
UserDefinedKineticLaws property
reference 6-106
UserDefinedUnitPrefixes property
reference 6-109
UserDefinedUnits property
reference 6-111

v

Value property
reference 6-113

ValueUnits property
reference 6-114

Index-5

	toc
	Functions – Categorical List
	Tools
	Projects
	SBML Models
	Object Constructors
	Units

	Functions — Alphabetical List
	Methods – Categorical List
	Abstract Kinetic Laws
	Configuration Sets
	Kinetic Laws
	Models
	Parameters
	Reactions
	Root
	Rules
	Species
	Using Object Methods
	Constructing (Creating) Objects
	Using Object Methods
	Help for Objects, Methods and Properties

	Methods — Alphabetical List
	Properties – Categorical List
	Abstract Kinetic Law
	Configuration Sets
	Kinetic Laws
	Models
	Parameters
	Reactions
	Root
	Rules
	Species
	Using Object Properties
	Entering property values
	Retrieving property values
	Help for Objects, Methods and Properties

	Properties — Alphabetical List

